These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

73 related articles for article (PubMed ID: 3707971)

  • 41. Activity assay of mammalian 2-cys peroxiredoxins using yeast thioredoxin reductase system.
    Kim JA; Park S; Kim K; Rhee SG; Kang SW
    Anal Biochem; 2005 Mar; 338(2):216-23. PubMed ID: 15745741
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Thioredoxin, glutaredoxin, and thioredoxin reductase from cultured HeLa cells.
    Tsang ML; Weatherbee JA
    Proc Natl Acad Sci U S A; 1981 Dec; 78(12):7478-82. PubMed ID: 6950391
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Characterization of Escherichia coli thioredoxin variants mimicking the active-sites of other thiol/disulfide oxidoreductases.
    Mössner E; Huber-Wunderlich M; Glockshuber R
    Protein Sci; 1998 May; 7(5):1233-44. PubMed ID: 9605329
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Formation and properties of mixed disulfides between thioredoxin reductase from Escherichia coli and thioredoxin: evidence that cysteine-138 functions to initiate dithiol-disulfide interchange and to accept the reducing equivalent from reduced flavin.
    Veine DM; Mulrooney SB; Wang PF; Williams CH
    Protein Sci; 1998 Jun; 7(6):1441-50. PubMed ID: 9655349
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A novel twist on molecular interactions between thioredoxin and nicotinamide adenine dinucleotide phosphate-dependent thioredoxin reductase.
    Kirkensgaard KG; Hägglund P; Shahpiri A; Finnie C; Henriksen A; Svensson B
    Proteins; 2014 Apr; 82(4):607-19. PubMed ID: 24123219
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Roles of N-terminal active cysteines and C-terminal cysteine-selenocysteine in the catalytic mechanism of mammalian thioredoxin reductase.
    Fujiwara N; Fujii T; Fujii J; Taniguchi N
    J Biochem; 2001 May; 129(5):803-12. PubMed ID: 11328605
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Plant thioredoxins: the multiplicity conundrum.
    Baumann U; Juttner J
    Cell Mol Life Sci; 2002 Jun; 59(6):1042-57. PubMed ID: 12169016
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Expression pattern of a chloroplast NADPH-dependent thioredoxin reductase in Chlorella vulgaris during hardening and its interaction with 2-Cys peroxiredoxin.
    Machida T; Kato E; Ishibashi A; Sato J; Kawasaki S; Niimura Y; Honjoh K; Miyamoto T
    Biosci Biotechnol Biochem; 2009 Mar; 73(3):695-701. PubMed ID: 19270395
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Plant thioredoxin h: an animal-like thioredoxin occurring in multiple cell compartments.
    Marcus F; Chamberlain SH; Chu C; Masiarz FR; Shin S; Yee BC; Buchanan BB
    Arch Biochem Biophys; 1991 May; 287(1):195-8. PubMed ID: 1897989
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A conformational study of thioredoxin and its tryptic fragments.
    Reutimann H; Straub B; Luisi PL; Holmgren A
    J Biol Chem; 1981 Jul; 256(13):6796-803. PubMed ID: 7016877
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Structure of the complex formed by bovine trypsin and bovine pancreatic trypsin inhibitor. Crystal structure determination and stereochemistry of the contact region.
    Rühlmann A; Kukla D; Schwager P; Bartels K; Huber R
    J Mol Biol; 1973 Jul; 77(3):417-36. PubMed ID: 4737866
    [No Abstract]   [Full Text] [Related]  

  • 52. Accessibilities and reactivities of cysteine thiols during refolding of reduced bovine pancreatic trypsin inhibitor.
    Creighton TE
    J Mol Biol; 1981 Sep; 151(1):211-3. PubMed ID: 7328653
    [No Abstract]   [Full Text] [Related]  

  • 53. The function of the Drosophila thioredoxin homologue encoded by the deadhead gene is redox-dependent and blocks the initiation of development but not DNA synthesis.
    Pellicena-Pallé A; Stitzinger SM; Salz HK
    Mech Dev; 1997 Feb; 62(1):61-5. PubMed ID: 9106167
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A statistical approach to the calculation of conformation of proteins. 2. The reoxidation of reduced trypsin inhibitor.
    Crippen GM
    Macromolecules; 1977; 10(1):25-8. PubMed ID: 839859
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Assay of plasma leupeptin using the reversible binding of leupeptin to bovine pancreatic trypsin.
    Yamashita K; Watanabe K; Takayama H; Mizuguchi S; Ishibashi M; Miyazaki H; Tanaka W; Umezawa H
    Anal Biochem; 1986 Aug; 156(2):503-7. PubMed ID: 3766949
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Studies on peptides. XLII. Synthesis of the protected nonapeptide corresponding to positions 29 to 37 of the basic trypsin inhibitor from bovine pancreas (Kunitz and Northrop).
    Yajima H; Mizokami N; Kiso M; Jinnouchi T; Kai Y
    Chem Pharm Bull (Tokyo); 1974 May; 22(5):1075-8. PubMed ID: 4472829
    [No Abstract]   [Full Text] [Related]  

  • 57. Crystal structure of thioredoxin 1 from
    Bravo-Chaucanés CP; Abadio AKR; Kioshima ÉS; Felipe MSS; Barbosa JARG
    Biochem Biophys Rep; 2020 Mar; 21():100724. PubMed ID: 32021910
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Refolding of bovine pancreatic trypsin inhibitor modified at methionine-52.
    Creighton TE; Dyckes DF; Sheppard RC
    J Mol Biol; 1978 Mar; 119(4):507-18. PubMed ID: 641999
    [No Abstract]   [Full Text] [Related]  

  • 59. Epidermal growth factor: internal duplication and probable relationship to pancreatic secretory trypsin inhibitor.
    Hunt LT; Barker WC; Dayhoff MO
    Biochem Biophys Res Commun; 1974 Oct; 60(3):1020-8. PubMed ID: 4429557
    [No Abstract]   [Full Text] [Related]  

  • 60. Refolding of S-methylmethionyl basic pancreatic trypsin inhibitor.
    Creighton TE; Dyckes DF
    J Mol Biol; 1981 Mar; 146(3):375-87. PubMed ID: 7265235
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.