These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 37079887)

  • 1. Iron Photoredox Catalysis-Past, Present, and Future.
    de Groot LHM; Ilic A; Schwarz J; Wärnmark K
    J Am Chem Soc; 2023 May; 145(17):9369-9388. PubMed ID: 37079887
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Visible-Light-Induced Homolysis of Earth-Abundant Metal-Substrate Complexes: A Complementary Activation Strategy in Photoredox Catalysis.
    Abderrazak Y; Bhattacharyya A; Reiser O
    Angew Chem Int Ed Engl; 2021 Sep; 60(39):21100-21115. PubMed ID: 33599363
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Shining Light on Copper: Unique Opportunities for Visible-Light-Catalyzed Atom Transfer Radical Addition Reactions and Related Processes.
    Reiser O
    Acc Chem Res; 2016 Sep; 49(9):1990-6. PubMed ID: 27556932
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Light Runs Across Iron Catalysts in Organic Transformations.
    Zhou WJ; Wu XD; Miao M; Wang ZH; Chen L; Shan SY; Cao GM; Yu DG
    Chemistry; 2020 Nov; 26(66):15052-15064. PubMed ID: 32614093
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Merging Visible Light Photoredox and Gold Catalysis.
    Hopkinson MN; Tlahuext-Aca A; Glorius F
    Acc Chem Res; 2016 Oct; 49(10):2261-2272. PubMed ID: 27610939
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthetic and Mechanistic Implications of Chlorine Photoelimination in Nickel/Photoredox C(sp
    Kariofillis SK; Doyle AG
    Acc Chem Res; 2021 Feb; 54(4):988-1000. PubMed ID: 33511841
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Merging Visible Light Photoredox Catalysis with Metal Catalyzed C-H Activations: On the Role of Oxygen and Superoxide Ions as Oxidants.
    Fabry DC; Rueping M
    Acc Chem Res; 2016 Sep; 49(9):1969-79. PubMed ID: 27556812
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Is Iron the New Ruthenium?
    Wenger OS
    Chemistry; 2019 Apr; 25(24):6043-6052. PubMed ID: 30615242
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Photoinduced Ligand-to-Metal Charge Transfer in Base-Metal Catalysis.
    Treacy SM; Rovis T
    Synthesis (Stuttg); 2024 Jul; 56(13):1967-1978. PubMed ID: 38962497
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Understanding the Kinetics and Spectroscopy of Photoredox Catalysis and Transition-Metal-Free Alternatives.
    Pitre SP; McTiernan CD; Scaiano JC
    Acc Chem Res; 2016 Jun; 49(6):1320-30. PubMed ID: 27023767
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanistic Perspectives on Organic Photoredox Catalysis for Aromatic Substitutions.
    Majek M; Jacobi von Wangelin A
    Acc Chem Res; 2016 Oct; 49(10):2316-2327. PubMed ID: 27669097
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Steering Asymmetric Lewis Acid Catalysis Exclusively with Octahedral Metal-Centered Chirality.
    Zhang L; Meggers E
    Acc Chem Res; 2017 Feb; 50(2):320-330. PubMed ID: 28128920
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanistic Origin of Photoredox Catalysis Involving Iron(II) Polypyridyl Chromophores.
    Woodhouse MD; McCusker JK
    J Am Chem Soc; 2020 Sep; 142(38):16229-16233. PubMed ID: 32914970
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Asymmetric Photocatalysis with Bis-cyclometalated Rhodium Complexes.
    Huang X; Meggers E
    Acc Chem Res; 2019 Mar; 52(3):833-847. PubMed ID: 30840435
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Direct Evidence for Excited Ligand Field State-based Oxidative Photoredox Chemistry of a Cobalt(III) Polypyridyl Photosensitizer.
    Alowakennu MM; Ghosh A; McCusker JK
    J Am Chem Soc; 2023 Sep; 145(38):20786-20791. PubMed ID: 37703518
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Photoredox Catalysis with Metal Complexes Made from Earth-Abundant Elements.
    Larsen CB; Wenger OS
    Chemistry; 2018 Feb; 24(9):2039-2058. PubMed ID: 28892199
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Photostable Ruthenium(II) Isocyanoborato Luminophores and Their Use in Energy Transfer and Photoredox Catalysis.
    Schmid L; Kerzig C; Prescimone A; Wenger OS
    JACS Au; 2021 Jun; 1(6):819-832. PubMed ID: 34467335
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Water-Soluble Tris(cyclometalated) Iridium(III) Complexes for Aqueous Electron and Energy Transfer Photochemistry.
    Schreier MR; Guo X; Pfund B; Okamoto Y; Ward TR; Kerzig C; Wenger OS
    Acc Chem Res; 2022 May; 55(9):1290-1300. PubMed ID: 35414170
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Redox catalysis
    Lee YM; Nam W; Fukuzumi S
    Chem Sci; 2023 Apr; 14(16):4205-4218. PubMed ID: 37123199
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    Ting SI; Garakyaraghi S; Taliaferro CM; Shields BJ; Scholes GD; Castellano FN; Doyle AG
    J Am Chem Soc; 2020 Mar; 142(12):5800-5810. PubMed ID: 32150401
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.