BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 37080004)

  • 1. A deep learning network based on CNN and sliding window LSTM for spike sorting.
    Wang M; Zhang L; Yu H; Chen S; Zhang X; Zhang Y; Gao D
    Comput Biol Med; 2023 Jun; 159():106879. PubMed ID: 37080004
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Classification of overlapping spikes using convolutional neural networks and long short term memory.
    Liu M; Feng J; Wang Y; Li Z
    Comput Biol Med; 2022 Sep; 148():105888. PubMed ID: 35872414
    [TBL] [Abstract][Full Text] [Related]  

  • 3. SpikeDeep-classifier: a deep-learning based fully automatic offline spike sorting algorithm.
    Saif-Ur-Rehman M; Ali O; Dyck S; Lienkämper R; Metzler M; Parpaley Y; Wellmer J; Liu C; Lee B; Kellis S; Andersen R; Iossifidis I; Glasmachers T; Klaes C
    J Neural Eng; 2021 Feb; 18(1):. PubMed ID: 33166944
    [No Abstract]   [Full Text] [Related]  

  • 4. An Accurate and Robust Method for Spike Sorting Based on Convolutional Neural Networks.
    Li Z; Wang Y; Zhang N; Li X
    Brain Sci; 2020 Nov; 10(11):. PubMed ID: 33187098
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deep-learned spike representations and sorting via an ensemble of auto-encoders.
    Eom J; Park IY; Kim S; Jang H; Park S; Huh Y; Hwang D
    Neural Netw; 2021 Feb; 134():131-142. PubMed ID: 33307279
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Online spike sorting via deep contractive autoencoder.
    Radmanesh M; Rezaei AA; Jalili M; Hashemi A; Goudarzi MM
    Neural Netw; 2022 Nov; 155():39-49. PubMed ID: 36041279
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multimode Gesture Recognition Algorithm Based on Convolutional Long Short-Term Memory Network.
    Lu MX; Du GZ; Li ZF
    Comput Intell Neurosci; 2022; 2022():4068414. PubMed ID: 35281195
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Automatic online spike sorting with singular value decomposition and fuzzy C-mean clustering.
    Oliynyk A; Bonifazzi C; Montani F; Fadiga L
    BMC Neurosci; 2012 Aug; 13():96. PubMed ID: 22871125
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Malicious Domain Detection Model Based on Improved Deep Learning.
    Huang X; Li H; Liu J; Liu F; Wang J; Xie B; Chen B; Zhang Q; Xue T
    Comput Intell Neurosci; 2022; 2022():9241670. PubMed ID: 35795747
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Edge deep learning for neural implants: a case study of seizure detection and prediction.
    Liu X; Richardson AG
    J Neural Eng; 2021 Apr; 18(4):. PubMed ID: 33794507
    [No Abstract]   [Full Text] [Related]  

  • 11. Prevalence and risk factors analysis of postpartum depression at early stage using hybrid deep learning model.
    Lilhore UK; Dalal S; Varshney N; Sharma YK; Rao KBVB; Rao VVRM; Alroobaea R; Simaiya S; Margala M; Chakrabarti P
    Sci Rep; 2024 Feb; 14(1):4533. PubMed ID: 38402249
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Noise-robust unsupervised spike sorting based on discriminative subspace learning with outlier handling.
    Keshtkaran MR; Yang Z
    J Neural Eng; 2017 Jun; 14(3):036003. PubMed ID: 28198354
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An Investigation of Deep Learning Models for EEG-Based Emotion Recognition.
    Zhang Y; Chen J; Tan JH; Chen Y; Chen Y; Li D; Yang L; Su J; Huang X; Che W
    Front Neurosci; 2020; 14():622759. PubMed ID: 33424547
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spike detection and sorting with deep learning.
    Rácz M; Liber C; Németh E; Fiáth R; Rokai J; Harmati I; Ulbert I; Márton G
    J Neural Eng; 2020 Jan; 17(1):016038. PubMed ID: 31561235
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Classification of benign and malignant subtypes of breast cancer histopathology imaging using hybrid CNN-LSTM based transfer learning.
    Srikantamurthy MM; Rallabandi VPS; Dudekula DB; Natarajan S; Park J
    BMC Med Imaging; 2023 Jan; 23(1):19. PubMed ID: 36717788
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Emotion classification using a CNN_LSTM-based model for smooth emotional synchronization of the humanoid robot REN-XIN.
    Liu N; Ren F
    PLoS One; 2019; 14(5):e0215216. PubMed ID: 31048831
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A neural network for online spike classification that improves decoding accuracy.
    Issar D; Williamson RC; Khanna SB; Smith MA
    J Neurophysiol; 2020 Apr; 123(4):1472-1485. PubMed ID: 32101491
    [TBL] [Abstract][Full Text] [Related]  

  • 18. To sort or not to sort: the impact of spike-sorting on neural decoding performance.
    Todorova S; Sadtler P; Batista A; Chase S; Ventura V
    J Neural Eng; 2014 Oct; 11(5):056005. PubMed ID: 25082508
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of sliding window variation in the performance of acceleration-based human activity recognition using deep learning models.
    Jaén-Vargas M; Reyes Leiva KM; Fernandes F; Barroso Gonçalves S; Tavares Silva M; Lopes DS; Serrano Olmedo JJ
    PeerJ Comput Sci; 2022; 8():e1052. PubMed ID: 36091986
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A transfer learning-based CNN and LSTM hybrid deep learning model to classify motor imagery EEG signals.
    Khademi Z; Ebrahimi F; Kordy HM
    Comput Biol Med; 2022 Apr; 143():105288. PubMed ID: 35168083
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.