These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Integrative radiogenomics analysis for predicting molecular features and survival in clear cell renal cell carcinoma. Zeng H; Chen L; Wang M; Luo Y; Huang Y; Ma X Aging (Albany NY); 2021 Mar; 13(7):9960-9975. PubMed ID: 33795526 [TBL] [Abstract][Full Text] [Related]
4. Machine learning-based unenhanced CT texture analysis for predicting BAP1 mutation status of clear cell renal cell carcinomas. Kocak B; Durmaz ES; Kaya OK; Kilickesmez O Acta Radiol; 2020 Jun; 61(6):856-864. PubMed ID: 31635476 [TBL] [Abstract][Full Text] [Related]
5. CT-based radiomics stratification of tumor grade and TNM stage of clear cell renal cell carcinoma. Demirjian NL; Varghese BA; Cen SY; Hwang DH; Aron M; Siddiqui I; Fields BKK; Lei X; Yap FY; Rivas M; Reddy SS; Zahoor H; Liu DH; Desai M; Rhie SK; Gill IS; Duddalwar V Eur Radiol; 2022 Apr; 32(4):2552-2563. PubMed ID: 34757449 [TBL] [Abstract][Full Text] [Related]
6. Computed tomography-based radiomics prediction of CTLA4 expression and prognosis in clear cell renal cell carcinoma. He H; Jin Z; Dai J; Wang H; Sun J; Xu D Cancer Med; 2023 Mar; 12(6):7627-7638. PubMed ID: 36397666 [TBL] [Abstract][Full Text] [Related]
7. Noninvasive Fuhrman grading of clear cell renal cell carcinoma using computed tomography radiomic features and machine learning. Nazari M; Shiri I; Hajianfar G; Oveisi N; Abdollahi H; Deevband MR; Oveisi M; Zaidi H Radiol Med; 2020 Aug; 125(8):754-762. PubMed ID: 32193870 [TBL] [Abstract][Full Text] [Related]
8. CT-based radiomic model predicts high grade of clear cell renal cell carcinoma. Ding J; Xing Z; Jiang Z; Chen J; Pan L; Qiu J; Xing W Eur J Radiol; 2018 Jun; 103():51-56. PubMed ID: 29803385 [TBL] [Abstract][Full Text] [Related]
9. Clear cell renal cell carcinoma: Machine learning-based computed tomography radiomics analysis for the prediction of WHO/ISUP grade. Shu J; Wen D; Xi Y; Xia Y; Cai Z; Xu W; Meng X; Liu B; Yin H Eur J Radiol; 2019 Dec; 121():108738. PubMed ID: 31756634 [TBL] [Abstract][Full Text] [Related]
10. Predicting the ISUP grade of clear cell renal cell carcinoma with multiparametric MR and multiphase CT radiomics. Cui E; Li Z; Ma C; Li Q; Lei Y; Lan Y; Yu J; Zhou Z; Li R; Long W; Lin F Eur Radiol; 2020 May; 30(5):2912-2921. PubMed ID: 32002635 [TBL] [Abstract][Full Text] [Related]
11. Fuhrman nuclear grade prediction of clear cell renal cell carcinoma: influence of volume of interest delineation strategies on machine learning-based dynamic enhanced CT radiomics analysis. Luo S; Wei R; Lu S; Lai S; Wu J; Wu Z; Pang X; Wei X; Jiang X; Zhen X; Yang R Eur Radiol; 2022 Apr; 32(4):2340-2350. PubMed ID: 34636962 [TBL] [Abstract][Full Text] [Related]
12. A radiogenomics biomarker based on immunological heterogeneity for non-invasive prognosis of renal clear cell carcinoma. Gao J; Ye F; Han F; Jiang H; Zhang J Front Immunol; 2022; 13():956679. PubMed ID: 36177018 [TBL] [Abstract][Full Text] [Related]
13. Clear cell renal cell carcinoma: CT-based radiomics features for the prediction of Fuhrman grade. Shu J; Tang Y; Cui J; Yang R; Meng X; Cai Z; Zhang J; Xu W; Wen D; Yin H Eur J Radiol; 2018 Dec; 109():8-12. PubMed ID: 30527316 [TBL] [Abstract][Full Text] [Related]
14. Deep learning and radiomics: the utility of Google TensorFlow™ Inception in classifying clear cell renal cell carcinoma and oncocytoma on multiphasic CT. Coy H; Hsieh K; Wu W; Nagarajan MB; Young JR; Douek ML; Brown MS; Scalzo F; Raman SS Abdom Radiol (NY); 2019 Jun; 44(6):2009-2020. PubMed ID: 30778739 [TBL] [Abstract][Full Text] [Related]
15. Influence of segmentation margin on machine learning-based high-dimensional quantitative CT texture analysis: a reproducibility study on renal clear cell carcinomas. Kocak B; Ates E; Durmaz ES; Ulusan MB; Kilickesmez O Eur Radiol; 2019 Sep; 29(9):4765-4775. PubMed ID: 30747300 [TBL] [Abstract][Full Text] [Related]
16. Radiogenomic analysis based on lipid metabolism-related subset for non-invasive prediction for prognosis of renal clear cell carcinoma. He H; Xie Y; Song F; Feng Z; Rong P Eur J Radiol; 2024 Jun; 175():111433. PubMed ID: 38554673 [TBL] [Abstract][Full Text] [Related]
17. CT-based machine learning model to predict the Fuhrman nuclear grade of clear cell renal cell carcinoma. Lin F; Cui EM; Lei Y; Luo LP Abdom Radiol (NY); 2019 Jul; 44(7):2528-2534. PubMed ID: 30919041 [TBL] [Abstract][Full Text] [Related]
18. Radiogenomics of clear cell renal cell carcinoma: associations between CT imaging features and mutations. Karlo CA; Di Paolo PL; Chaim J; Hakimi AA; Ostrovnaya I; Russo P; Hricak H; Motzer R; Hsieh JJ; Akin O Radiology; 2014 Feb; 270(2):464-71. PubMed ID: 24029645 [TBL] [Abstract][Full Text] [Related]
19. A comprehensive texture feature analysis framework of renal cell carcinoma: pathological, prognostic, and genomic evaluation based on CT images. Wu K; Wu P; Yang K; Li Z; Kong S; Yu L; Zhang E; Liu H; Guo Q; Wu S Eur Radiol; 2022 Apr; 32(4):2255-2265. PubMed ID: 34800150 [TBL] [Abstract][Full Text] [Related]
20. Multiphase comparative study for WHO/ISUP nuclear grading diagnostic model based on enhanced CT images of clear cell renal cell carcinoma. Lu C; Xia Y; Han J; Chen W; Qiao X; Gao R; Jiang X Sci Rep; 2024 May; 14(1):12043. PubMed ID: 38802547 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]