These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 37080546)

  • 41. Endowing textiles with self-repairing ability through the fabrication of composites with a bacterial biofilm.
    Cai A; Abdali Z; Saldanha DJ; Aminzare M; Dorval Courchesne NM
    Sci Rep; 2023 Jul; 13(1):11389. PubMed ID: 37452128
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Silk-Based Advanced Materials for Soft Electronics.
    Wang C; Xia K; Zhang Y; Kaplan DL
    Acc Chem Res; 2019 Oct; 52(10):2916-2927. PubMed ID: 31536330
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Smart Fibers and Textiles for Personal Health Management.
    Wang H; Zhang Y; Liang X; Zhang Y
    ACS Nano; 2021 Aug; 15(8):12497-12508. PubMed ID: 34398600
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Chained Iron Microparticles for Directionally Controlled Actuation of Soft Robots.
    Schmauch MM; Mishra SR; Evans BA; Velev OD; Tracy JB
    ACS Appl Mater Interfaces; 2017 Apr; 9(13):11895-11901. PubMed ID: 28349697
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Novel wireless-communicating textiles made from multi-material and minimally-invasive fibers.
    Gorgutsa S; Bélanger-Garnier V; Ung B; Viens J; Gosselin B; LaRochelle S; Messaddeq Y
    Sensors (Basel); 2014 Oct; 14(10):19260-74. PubMed ID: 25325335
    [TBL] [Abstract][Full Text] [Related]  

  • 46. PET/Graphene Nanocomposite Fibers Obtained by Dry-Jet Wet-Spinning for Conductive Textiles.
    León-Boigues L; Flores A; Gómez-Fatou MA; Vega JF; Ellis GJ; Salavagione HJ
    Polymers (Basel); 2023 Feb; 15(5):. PubMed ID: 36904485
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Engineering mechanical gradients in next generation biomaterials - Lessons learned from medical textile design.
    Ng JL; Collins CE; Knothe Tate ML
    Acta Biomater; 2017 Jul; 56():14-24. PubMed ID: 28274765
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Electroactive Textile Actuators for Breathability Control and Thermal Regulation Devices.
    Xiang C; Guo J; Sun R; Hinitt A; Helps T; Taghavi M; Rossiter J
    Polymers (Basel); 2019 Jul; 11(7):. PubMed ID: 31323744
    [TBL] [Abstract][Full Text] [Related]  

  • 49. In vitro biocompatibility and biomechanics study of novel, Microscopy Aided Designed and ManufacturEd (MADAME) materials emulating natural tissue weaves and their intrinsic gradients.
    Ng JL; Putra VDL; Knothe Tate ML
    J Mech Behav Biomed Mater; 2020 Mar; 103():103536. PubMed ID: 32090942
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Core-Shell-Yarn-Based Triboelectric Nanogenerator Textiles as Power Cloths.
    Yu A; Pu X; Wen R; Liu M; Zhou T; Zhang K; Zhang Y; Zhai J; Hu W; Wang ZL
    ACS Nano; 2017 Dec; 11(12):12764-12771. PubMed ID: 29211958
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Textile-integrated polymer optical fibers for healthcare and medical applications.
    Yamada Y
    Biomed Phys Eng Express; 2020 Nov; 6(6):. PubMed ID: 35027510
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Hollow-porous fibers for intrinsically thermally insulating textiles and wearable electronics with ultrahigh working sensitivity.
    Yu Y; Zheng G; Dai K; Zhai W; Zhou K; Jia Y; Zheng G; Zhang Z; Liu C; Shen C
    Mater Horiz; 2021 Mar; 8(3):1037-1046. PubMed ID: 34821334
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Ultra-High Actuation Stress Polymer Actuators as Light-Driven Artificial Muscles.
    Bhatti MRA; Bilotti E; Zhang H; Varghese S; Verpaalen RCP; Schenning APHJ; Bastiaansen CWM; Peijs T
    ACS Appl Mater Interfaces; 2020 Jul; 12(29):33210-33218. PubMed ID: 32580542
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Nanofibrous Kevlar Aerogel Threads for Thermal Insulation in Harsh Environments.
    Liu Z; Lyu J; Fang D; Zhang X
    ACS Nano; 2019 May; 13(5):5703-5711. PubMed ID: 31042355
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A Fully Three-Dimensional Printed Inchworm-Inspired Soft Robot with Magnetic Actuation.
    Joyee EB; Pan Y
    Soft Robot; 2019 Jun; 6(3):333-345. PubMed ID: 30720388
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Magnetic Multimaterial Printing for Multimodal Shape Transformation with Tunable Properties and Shiftable Mechanical Behaviors.
    Ma C; Wu S; Ze Q; Kuang X; Zhang R; Qi HJ; Zhao R
    ACS Appl Mater Interfaces; 2021 Mar; 13(11):12639-12648. PubMed ID: 32897697
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Stimuli-Responsive Shape Changing Commodity Polymer Composites and Bilayers.
    Verpaalen RCP; Engels T; Schenning APHJ; Debije MG
    ACS Appl Mater Interfaces; 2020 Sep; 12(35):38829-38844. PubMed ID: 32805900
    [TBL] [Abstract][Full Text] [Related]  

  • 58. 3D-printed programmable tensegrity for soft robotics.
    Lee H; Jang Y; Choe JK; Lee S; Song H; Lee JP; Lone N; Kim J
    Sci Robot; 2020 Aug; 5(45):. PubMed ID: 33022636
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Carbon-Nanotube Fibers for Wearable Devices and Smart Textiles.
    Di J; Zhang X; Yong Z; Zhang Y; Li D; Li R; Li Q
    Adv Mater; 2016 Dec; 28(47):10529-10538. PubMed ID: 27432521
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Smart E-Textiles: Overview of Components and Outlook.
    Ruckdashel RR; Khadse N; Park JH
    Sensors (Basel); 2022 Aug; 22(16):. PubMed ID: 36015815
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.