BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 3708065)

  • 1. A comparative study of different beta-whitlockite ceramics in rabbit cortical bone with regard to their biodegradation behaviour.
    Klein CP; de Groot K; Driessen AA; van der Lubbe HB
    Biomaterials; 1986 Mar; 7(2):144-6. PubMed ID: 3708065
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biodegradation behavior of various calcium phosphate materials in bone tissue.
    Klein CP; Driessen AA; de Groot K; van den Hooff A
    J Biomed Mater Res; 1983 Sep; 17(5):769-84. PubMed ID: 6311838
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interaction of biodegradable beta-whitlockite ceramics with bone tissue: an in vivo study.
    Klein CP; de Groot K; Driessen AA; van der Lubbe HB
    Biomaterials; 1985 May; 6(3):189-92. PubMed ID: 4005363
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Macroporous calcium phosphate bioceramics in dog femora: a histological study of interface and biodegradation.
    Klein CP; Patka P; den Hollander W
    Biomaterials; 1989 Jan; 10(1):59-62. PubMed ID: 2540845
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Different calcium phosphate bioglass ceramics implanted in rabbit cortical bone. An interface study.
    Klein CP; Abe Y; Hosono H; de Groot K
    Biomaterials; 1984 Nov; 5(6):362-4. PubMed ID: 6525396
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Macroporous calcium phosphate ceramics for bone substitution: a tracer study on biodegradation with 45Ca tracer.
    den Hollander W; Patka P; Klein CP; Heidendal GA
    Biomaterials; 1991 Aug; 12(6):569-73. PubMed ID: 1772955
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of calcium phosphate glass ceramics with apatite ceramics implanted in bone. An interface study--II.
    Klein CP; Abe Y; Hosono H; de Groot K
    Biomaterials; 1987 May; 8(3):234-6. PubMed ID: 3300793
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The use of ceramics for bone replacement. A comparative study of three different porous ceramics.
    Uchida A; Nade SM; McCartney ER; Ching W
    J Bone Joint Surg Br; 1984 Mar; 66(2):269-75. PubMed ID: 6323483
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Resorption of apatite-wollastonite containing glass-ceramic and beta-tricalcium phosphate in vivo.
    Teramoto H; Kawai A; Sugihara S; Yoshida A; Inoue H
    Acta Med Okayama; 2005 Oct; 59(5):201-7. PubMed ID: 16286959
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Electron microscopic study of a macroporous calcium phosphate ceramic implanted in an osseous site].
    Grizon F; Filmon R; Chappard D; Rebel A; Basle MF
    Bull Assoc Anat (Nancy); 1994 Mar; 78(240):39-45. PubMed ID: 8054695
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evolution of the local calcium content around irradiated beta-tricalcium phosphate ceramic implants: in vivo study in the rabbit.
    Le Huec JC; Clément D; Brouillaud B; Barthe N; Dupuy B; Foliguet B; Basse-Cathalinat B
    Biomaterials; 1998; 19(7-9):733-8. PubMed ID: 9663747
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Significance of the porosity and physical chemistry of calcium phosphate ceramics. Orthopedic uses.
    Lemons JE; Bajpai PK; Patka P; Bonel G; Starling LB; Rosenstiel T; Muschler G; Kampner S; Timmermans J
    Ann N Y Acad Sci; 1988; 523():278-82. PubMed ID: 3382128
    [No Abstract]   [Full Text] [Related]  

  • 13. Scanning electron microscopy-electron probe microanalysis study of the interface between apatite and wollastonite-containing glass-ceramic and rabbit tibia under load-bearing conditions after long-term implantation.
    Kitsugi T; Yamamuro T; Nakamura T; Oka M; Kokubo T; Okunaga K; Shibuya T
    Calcif Tissue Int; 1995 Apr; 56(4):331-5. PubMed ID: 7767846
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Comparative experimental animal studies on bone regeneration after implantation of various calcium phosphate ceramics].
    Wagner W; Wahlmann UW
    Dtsch Zahnarztl Z; 1985 Jun; 40(6):664-7. PubMed ID: 3868572
    [No Abstract]   [Full Text] [Related]  

  • 15. Enhancement of bone bonding to bioactive ceramics by demineralized bone powder.
    Kotani S; Yamamuro T; Nakamura T; Kitsugi T; Fujita Y; Kawanabe K; Kokubo T
    Clin Orthop Relat Res; 1992 May; (278):226-34. PubMed ID: 1563158
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative study of tissue reactions to calcium phosphate ceramics among cancellous, cortical, and medullar bone sites in rabbits.
    Lu JX; Gallur A; Flautre B; Anselme K; Descamps M; Thierry B; Hardouin P
    J Biomed Mater Res; 1998 Dec; 42(3):357-67. PubMed ID: 9788497
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Osteoclastic resorption of calcium phosphate ceramics with different hydroxyapatite/beta-tricalcium phosphate ratios.
    Yamada S; Heymann D; Bouler JM; Daculsi G
    Biomaterials; 1997 Aug; 18(15):1037-41. PubMed ID: 9239465
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Significance of the porosity and physical chemistry of calcium phosphate ceramics. Biodegradation-bioresorption.
    LeGeros RZ; Parsons JR; Daculsi G; Driessens F; Lee D; Liu ST; Metsger S; Peterson D; Walker M
    Ann N Y Acad Sci; 1988; 523():268-71. PubMed ID: 2837944
    [No Abstract]   [Full Text] [Related]  

  • 19. Biodegradable bone repair materials. Synthetic polymers and ceramics.
    Hollinger JO; Battistone GC
    Clin Orthop Relat Res; 1986 Jun; (207):290-305. PubMed ID: 3522015
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Biological compatibility of porous ceramic material].
    Bieniek J; Swiecki Z; Rosiek G; Buczek A
    Chir Narzadow Ruchu Ortop Pol; 1983; 48(4):363-7. PubMed ID: 6661956
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.