These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

323 related articles for article (PubMed ID: 37080758)

  • 1. Using traditional machine learning and deep learning methods for on- and off-target prediction in CRISPR/Cas9: a review.
    Sherkatghanad Z; Abdar M; Charlier J; Makarenkov V
    Brief Bioinform; 2023 May; 24(3):. PubMed ID: 37080758
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prediction of off-target specificity and cell-specific fitness of CRISPR-Cas System using attention boosted deep learning and network-based gene feature.
    Liu Q; He D; Xie L
    PLoS Comput Biol; 2019 Oct; 15(10):e1007480. PubMed ID: 31658261
    [TBL] [Abstract][Full Text] [Related]  

  • 3. R-CRISPR: A Deep Learning Network to Predict Off-Target Activities with Mismatch, Insertion and Deletion in CRISPR-Cas9 System.
    Niu R; Peng J; Zhang Z; Shang X
    Genes (Basel); 2021 Nov; 12(12):. PubMed ID: 34946828
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Prediction of CRISPR/Cas9 off-target activity using multi-scale convolutional neural network].
    Xie H; Huang L; Luo Y; Zhang G
    Sheng Wu Gong Cheng Xue Bao; 2024 Mar; 40(3):858-876. PubMed ID: 38545983
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Benchmarking deep learning methods for predicting CRISPR/Cas9 sgRNA on- and off-target activities.
    Zhang G; Luo Y; Dai X; Dai Z
    Brief Bioinform; 2023 Sep; 24(6):. PubMed ID: 37775147
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Off-target predictions in CRISPR-Cas9 gene editing using deep learning.
    Lin J; Wong KC
    Bioinformatics; 2018 Sep; 34(17):i656-i663. PubMed ID: 30423072
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An overview and metanalysis of machine and deep learning-based CRISPR gRNA design tools.
    Wang J; Zhang X; Cheng L; Luo Y
    RNA Biol; 2020 Jan; 17(1):13-22. PubMed ID: 31533522
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CRISPR-Cas9 gRNA efficiency prediction: an overview of predictive tools and the role of deep learning.
    Konstantakos V; Nentidis A; Krithara A; Paliouras G
    Nucleic Acids Res; 2022 Apr; 50(7):3616-3637. PubMed ID: 35349718
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CRISPR/Cas9 Guide RNA Design Rules for Predicting Activity.
    Hiranniramol K; Chen Y; Wang X
    Methods Mol Biol; 2020; 2115():351-364. PubMed ID: 32006410
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Generalizable sgRNA design for improved CRISPR/Cas9 editing efficiency.
    Hiranniramol K; Chen Y; Liu W; Wang X
    Bioinformatics; 2020 May; 36(9):2684-2689. PubMed ID: 31971562
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Application of machine learning in the CRISPR/Cas9 system].
    Zhang GS; Yang Y; Zhang LM; Dai XH
    Yi Chuan; 2018 Sep; 40(9):704-723. PubMed ID: 30369475
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CRISPRpred(SEQ): a sequence-based method for sgRNA on target activity prediction using traditional machine learning.
    Muhammad Rafid AH; Toufikuzzaman M; Rahman MS; Rahman MS
    BMC Bioinformatics; 2020 Jun; 21(1):223. PubMed ID: 32487025
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deep learning improves the ability of sgRNA off-target propensity prediction.
    Liu Q; Cheng X; Liu G; Li B; Liu X
    BMC Bioinformatics; 2020 Feb; 21(1):51. PubMed ID: 32041517
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CrnnCrispr: An Interpretable Deep Learning Method for CRISPR/Cas9 sgRNA On-Target Activity Prediction.
    Zhu W; Xie H; Chen Y; Zhang G
    Int J Mol Sci; 2024 Apr; 25(8):. PubMed ID: 38674012
    [TBL] [Abstract][Full Text] [Related]  

  • 15. BoostMEC: predicting CRISPR-Cas9 cleavage efficiency through boosting models.
    Zarate OA; Yang Y; Wang X; Wang JP
    BMC Bioinformatics; 2022 Oct; 23(1):446. PubMed ID: 36289480
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gene Therapy with CRISPR/Cas9 Coming to Age for HIV Cure.
    Soriano V
    AIDS Rev; 2017; 19(3):167-172. PubMed ID: 29019352
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Non-viral and viral delivery systems for CRISPR-Cas9 technology in the biomedical field.
    He ZY; Men K; Qin Z; Yang Y; Xu T; Wei YQ
    Sci China Life Sci; 2017 May; 60(5):458-467. PubMed ID: 28527117
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prediction of sgRNA on-target activity in bacteria by deep learning.
    Wang L; Zhang J
    BMC Bioinformatics; 2019 Oct; 20(1):517. PubMed ID: 31651233
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CRISPR-M: Predicting sgRNA off-target effect using a multi-view deep learning network.
    Sun J; Guo J; Liu J
    PLoS Comput Biol; 2024 Mar; 20(3):e1011972. PubMed ID: 38483980
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cas9 Cuts and Consequences; Detecting, Predicting, and Mitigating CRISPR/Cas9 On- and Off-Target Damage: Techniques for Detecting, Predicting, and Mitigating the On- and off-target Effects of Cas9 Editing.
    Newman A; Starrs L; Burgio G
    Bioessays; 2020 Sep; 42(9):e2000047. PubMed ID: 32643177
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.