These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Udder infections with Staphylococcus aureus, Streptococcus dysgalactiae, and Streptococcus uberis at calving in dairy herds with suboptimal udder health. Lundberg Å; Nyman AK; Aspán A; Börjesson S; Unnerstad HE; Waller KP J Dairy Sci; 2016 Mar; 99(3):2102-2117. PubMed ID: 26805990 [TBL] [Abstract][Full Text] [Related]
4. A survey of mastitis pathogens including antimicrobial susceptibility in southeastern Australian dairy herds. Dyson R; Charman N; Hodge A; Rowe SM; Taylor LF J Dairy Sci; 2022 Feb; 105(2):1504-1518. PubMed ID: 34955276 [TBL] [Abstract][Full Text] [Related]
5. Evaluation of minor pathogen intramammary infection, susceptibility parameters, and somatic cell counts on the development of new intramammary infections with major mastitis pathogens. Reyher KK; Dohoo IR; Scholl DT; Keefe GP J Dairy Sci; 2012 Jul; 95(7):3766-80. PubMed ID: 22720933 [TBL] [Abstract][Full Text] [Related]
6. Comparison of transmission dynamics between Streptococcus uberis and Streptococcus agalactiae intramammary infections. Leelahapongsathon K; Schukken YH; Pinyopummintr T; Suriyasathaporn W J Dairy Sci; 2016 Feb; 99(2):1418-1426. PubMed ID: 26686709 [TBL] [Abstract][Full Text] [Related]
7. Estimation of the performance of two real-time polymerase chain reaction assays for detection of Staphylococcus aureus, Streptococcus agalactiae, and Streptococcus dysgalactiae in pooled milk samples in a field study. Klassen A; Dittmar K; Schulz J; Einax E; Donat K J Dairy Sci; 2023 Dec; 106(12):9228-9243. PubMed ID: 37641275 [TBL] [Abstract][Full Text] [Related]
8. Factors associated with intramammary infection in dairy cows caused by coagulase-negative staphylococci, Staphylococcus aureus, Streptococcus uberis, Streptococcus dysgalactiae, Corynebacterium bovis, or Escherichia coli. Taponen S; Liski E; Heikkilä AM; Pyörälä S J Dairy Sci; 2017 Jan; 100(1):493-503. PubMed ID: 28341052 [TBL] [Abstract][Full Text] [Related]
9. Species identification and cow risks of non-aureus staphylococci from South African dairy herds. Petzer IM; Labuschagne C; Phophi L; Karzis J Onderstepoort J Vet Res; 2022 Jul; 89(1):e1-e10. PubMed ID: 35924616 [TBL] [Abstract][Full Text] [Related]
10. Duration of bovine intramammary infections in commercial dairy herds. Grommers FJ; van de Geer D; in 't Veen CA Vet Rec; 1985 Jun; 116(22):581-4. PubMed ID: 3892875 [TBL] [Abstract][Full Text] [Related]
11. Phenotypic antimicrobial susceptibility and occurrence of selected resistance genes in gram-positive mastitis pathogens isolated from Wisconsin dairy cows. Ruegg PL; Oliveira L; Jin W; Okwumabua O J Dairy Sci; 2015 Jul; 98(7):4521-34. PubMed ID: 25912858 [TBL] [Abstract][Full Text] [Related]
12. Pathogen-specific production losses in bovine mastitis. Heikkilä AM; Liski E; Pyörälä S; Taponen S J Dairy Sci; 2018 Oct; 101(10):9493-9504. PubMed ID: 30122416 [TBL] [Abstract][Full Text] [Related]
13. Species identification by MALDI-TOF MS and gap PCR-RFLP of non-aureus Staphylococcus, Mammaliicoccus, and Streptococcus spp. associated with sheep and goat mastitis. Rosa NM; Penati M; Fusar-Poli S; Addis MF; Tola S Vet Res; 2022 Oct; 53(1):84. PubMed ID: 36243811 [TBL] [Abstract][Full Text] [Related]
14. Evaluation of chromogenic culture media for rapid identification of microorganisms isolated from cows with clinical and subclinical mastitis. Granja BM; Fidelis CE; Garcia BLN; Dos Santos MV J Dairy Sci; 2021 Aug; 104(8):9115-9129. PubMed ID: 33934869 [TBL] [Abstract][Full Text] [Related]
15. Non-aureus staphylococci in fecal samples of dairy cows: First report and phenotypic and genotypic characterization. Wuytack A; De Visscher A; Piepers S; Boyen F; Haesebrouck F; De Vliegher S J Dairy Sci; 2019 Oct; 102(10):9345-9359. PubMed ID: 31421888 [TBL] [Abstract][Full Text] [Related]
16. Milk culture results in a large Norwegian survey--effects of season, parity, days in milk, resistance, and clustering. Osterås O; Sølverød L; Reksen O J Dairy Sci; 2006 Mar; 89(3):1010-23. PubMed ID: 16507696 [TBL] [Abstract][Full Text] [Related]
17. Association between teat skin colonization and intramammary infection with Staphylococcus aureus and Streptococcus agalactiae in herds with automatic milking systems. Svennesen L; Nielsen SS; Mahmmod YS; Krömker V; Pedersen K; Klaas IC J Dairy Sci; 2019 Jan; 102(1):629-639. PubMed ID: 30415854 [TBL] [Abstract][Full Text] [Related]
18. Elimination of selected mastitis pathogens during the dry period. Timonen AAE; Katholm J; Petersen A; Orro T; Mõtus K; Kalmus P J Dairy Sci; 2018 Oct; 101(10):9332-9338. PubMed ID: 30055920 [TBL] [Abstract][Full Text] [Related]
19. Prevalence of mastitis pathogens in Ragusa, Sicily, from 2000 to 2006. Ferguson JD; Azzaro G; Gambina M; Licitra G J Dairy Sci; 2007 Dec; 90(12):5798-813. PubMed ID: 18024774 [TBL] [Abstract][Full Text] [Related]
20. Bioeconomic modeling of lactational antimicrobial treatment of new bovine subclinical intramammary infections caused by contagious pathogens. van den Borne BH; Halasa T; van Schaik G; Hogeveen H; Nielen M J Dairy Sci; 2010 Sep; 93(9):4034-44. PubMed ID: 20723677 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]