These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

365 related articles for article (PubMed ID: 3708090)

  • 1. Red blood cell orientation in orbit C = 0.
    Bitbol M
    Biophys J; 1986 May; 49(5):1055-68. PubMed ID: 3708090
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of shear rate and suspending medium viscosity on elongation of red cells tank-treading in shear flow.
    Fischer TM; Korzeniewski R
    Cytometry A; 2011 Nov; 79(11):946-51. PubMed ID: 22015732
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Red blood cell deformation in shear flow. Effects of internal and external phase viscosity and of in vivo aging.
    Pfafferott C; Nash GB; Meiselman HJ
    Biophys J; 1985 May; 47(5):695-704. PubMed ID: 4016189
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tank-tread frequency of the red cell membrane: dependence on the viscosity of the suspending medium.
    Fischer TM
    Biophys J; 2007 Oct; 93(7):2553-61. PubMed ID: 17545241
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tank-treading and tumbling frequencies of capsules and red blood cells.
    Yazdani AZ; Kalluri RM; Bagchi P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Apr; 83(4 Pt 2):046305. PubMed ID: 21599293
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Elastic behavior of a red blood cell with the membrane's nonuniform natural state: equilibrium shape, motion transition under shear flow, and elongation during tank-treading motion.
    Tsubota K; Wada S; Liu H
    Biomech Model Mechanobiol; 2014 Aug; 13(4):735-46. PubMed ID: 24104211
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oscillatory tank-treading motion of erythrocytes in shear flows.
    Dodson WR; Dimitrakopoulos P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jul; 84(1 Pt 1):011913. PubMed ID: 21867219
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Angle of inclination of tank-treading red cells: dependence on shear rate and suspending medium.
    Fischer TM; Korzeniewski R
    Biophys J; 2015 Mar; 108(6):1352-1360. PubMed ID: 25809249
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phase diagram and breathing dynamics of a single red blood cell and a biconcave capsule in dilute shear flow.
    Yazdani AZ; Bagchi P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Aug; 84(2 Pt 2):026314. PubMed ID: 21929097
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Changes in viscosity of low shear rates and viscoelastic properties of oxidative erythrocyte suspensions.
    Chung TW; Ho CP
    Clin Hemorheol Microcirc; 1999; 21(2):99-103. PubMed ID: 10599593
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Theoretical model and experimental study of red blood cell (RBC) deformation in microchannels.
    Korin N; Bransky A; Dinnar U
    J Biomech; 2007; 40(9):2088-95. PubMed ID: 17188279
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Determination of red blood cell membrane viscosity from rheoscopic observations of tank-treading motion.
    Tran-Son-Tay R; Sutera SP; Rao PR
    Biophys J; 1984 Jul; 46(1):65-72. PubMed ID: 6743758
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Physical and chemical effects of red cells in the shear-induced aggregation of human platelets.
    Goldsmith HL; Bell DN; Braovac S; Steinberg A; McIntosh F
    Biophys J; 1995 Oct; 69(4):1584-95. PubMed ID: 8534829
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamic modes of red blood cells in oscillatory shear flow.
    Noguchi H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jun; 81(6 Pt 1):061920. PubMed ID: 20866453
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On the measurement of shear elastic moduli and viscosities of erythrocyte plasma membranes by transient deformation in high frequency electric fields.
    Engelhardt H; Sackmann E
    Biophys J; 1988 Sep; 54(3):495-508. PubMed ID: 3207837
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intermediate regime and a phase diagram of red blood cell dynamics in a linear flow.
    Levant M; Steinberg V
    Phys Rev E; 2016 Dec; 94(6-1):062412. PubMed ID: 28085369
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microscopic photometric quantification of stiffness and relaxation time of red blood cells in a flow chamber.
    Artmann GM
    Biorheology; 1995; 32(5):553-70. PubMed ID: 8541524
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Erythrocyte deformation in shear flow: influences of internal viscosity, membrane stiffness, and hematocrit.
    Kon K; Maeda N; Shiga T
    Blood; 1987 Mar; 69(3):727-34. PubMed ID: 2434160
    [TBL] [Abstract][Full Text] [Related]  

  • 19. On the energy dissipation in a tank-treading human red blood cell.
    Fischer TM
    Biophys J; 1980 Nov; 32(2):863-8. PubMed ID: 7260306
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of red blood cell motion through cylindrical micropores: effects of cell properties.
    Secomb TW; Hsu R
    Biophys J; 1996 Aug; 71(2):1095-101. PubMed ID: 8842246
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.