BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

78 related articles for article (PubMed ID: 3708091)

  • 1. pH-dependent absorption in the B and Q bands of oxyhemoglobin and chemically modified oxyhemoglobin (BME) at low Cl- concentrations.
    Brunzel U; Dreybrodt W; Schweitzer-Stenner R
    Biophys J; 1986 May; 49(5):1069-76. PubMed ID: 3708091
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Correspondence of the pK values of oxyHb-titration states detected by resonance Raman scattering to kinetic data of ligand dissociation and association.
    Schweitzer-Stenner R; Wedekind D; Dreybrodt W
    Biophys J; 1986 May; 49(5):1077-88. PubMed ID: 3708092
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Heme-apoprotein interaction in the modified oxyhemoglobin-bis(N-maleimidomethyl)ether and in oxyhemoglobin at high Cl-concentration detected by resonance Raman scattering.
    Wedekind D; Schweitzer-Stenner R; Dreybrodt W
    Biochim Biophys Acta; 1985 Aug; 830(3):224-32. PubMed ID: 4027250
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Investigation of pH-induced symmetry distortions of the prosthetic group in oxyhaemoglobin by resonance Raman scattering.
    Schweitzer-Stenner R; Dreybrodt W; Wedekind D; el Naggar S
    Eur Biophys J; 1984; 11(1):61-76. PubMed ID: 6468345
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Detection of the heme perturbations caused by the quaternary R----T transition in oxyhemoglobin trout IV by resonance Raman scattering.
    Schweitzer-Stenner R; Wedekind D; Dreybrodt W
    Biophys J; 1989 Apr; 55(4):703-12. PubMed ID: 2720068
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The influence of structural variations in the F- and FG-helix of the beta-subunit modified oxyHb-NES on the heme structure detected by resonance Raman spectroscopy.
    Schweitzer-Stenner R; Wedekind D; Dreybrodt W
    Eur Biophys J; 1989; 17(2):87-100. PubMed ID: 2767001
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrostatic effects in hemoglobin: hydrogen ion equilibria in human deoxy- and oxyhemoglobin A.
    Matthew JB; Hanania GI; Gurd FR
    Biochemistry; 1979 May; 18(10):1919-28. PubMed ID: 435457
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effect of pH on the rate of dissociation of the oxygenated beta chain tetramer of Hb A.
    Turci SM; McDonald MJ
    Biochem Biophys Res Commun; 1983 Feb; 111(1):55-60. PubMed ID: 6830601
    [TBL] [Abstract][Full Text] [Related]  

  • 9. pH-induced conformational changes of the Fe(2+)-N epsilon (His F8) linkage in deoxyhemoglobin trout IV detected by the Raman active Fe(2+)-N epsilon (His F8) stretching mode.
    Bosenbeck M; Schweitzer-Stenner R; Dreybrodt W
    Biophys J; 1992 Jan; 61(1):31-41. PubMed ID: 1540697
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The carbamate equilibrium of alpha- and epsilon-amino groups of human hemoglobin at 37 degrees C.
    Gros G; Rollema HS; Forster RE
    J Biol Chem; 1981 Jun; 256(11):5471-80. PubMed ID: 6165715
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of anions on the molecular basis of the Bohr effect of hemoglobin.
    Busch MR; Ho CE
    Biophys Chem; 1990 Aug; 37(1-3):313-22. PubMed ID: 2285794
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Raman dispersion spectroscopy probes heme distortions in deoxyHb-trout IV involved in its T-state Bohr effect.
    Schweitzer-Stenner R; Bosenbeck M; Dreybrodt W
    Biophys J; 1993 Apr; 64(4):1194-209. PubMed ID: 19431886
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An investigation of human oxyhemoglobin beta tetramer dissociation using haptoglobin binding.
    Michalski LA; McDonald MJ
    Biochem Biophys Res Commun; 1988 Oct; 156(1):438-44. PubMed ID: 3178845
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of the residues involved in the oxygen-linked chloride-ion binding sites in human deoxyhemoglobin and oxyhemoglobin.
    Van Beek GG; De Bruin SH
    Eur J Biochem; 1980 Apr; 105(2):353-60. PubMed ID: 7379791
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of alpha and beta carboxyl-terminal residues in the kinetics of human oxyhemoglobin dimer assembly.
    Joshi AA; McDonald MJ
    J Biol Chem; 1994 Mar; 269(11):8549-53. PubMed ID: 7907594
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tracer diffusion coefficients of oxyhemoglobin A and oxyhemoglobin S in blood cells as determined by pulsed field gradient NMR.
    Everhart CH; Gabriel DA; Johnson CS
    Biophys Chem; 1982 Nov; 16(3):241-5. PubMed ID: 7171716
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Association-dependent absorption spectra of oxyhemoglobin A and its subunits.
    Philo JS; Adams ML; Schuster TM
    J Biol Chem; 1981 Aug; 256(15):7917-24. PubMed ID: 7263633
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Oxygen-organophosphate linkage in hemoglobin A. The double hump effect.
    Kister J; Poyart C; Edelstein SJ
    Biophys J; 1987 Oct; 52(4):527-35. PubMed ID: 3676434
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The kinetics of assembly of normal and variant human oxyhemoglobins.
    McDonald MJ; Turci SM; Mrabet NT; Himelstein BP; Bunn HF
    J Biol Chem; 1987 May; 262(13):5951-6. PubMed ID: 3571243
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Investigation of heme distortions and heme-protein coupling in the isolated subunits of oxygenated human hemoglobin by resonance Raman dispersion spectroscopy.
    Schweitzer-Stenner R; Dannemann U; Dreybrodt W
    Biochemistry; 1992 Jan; 31(3):694-702. PubMed ID: 1731925
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.