These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 3708095)

  • 1. The thermodynamics of calcium binding to thermolysin.
    Buchanan JD; Corbett RJ; Roche RS
    Biophys Chem; 1986 Mar; 23(3-4):183-99. PubMed ID: 3708095
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of Calcium in the thermal stability of thermolysin.
    Dahlquist FW; Long JW; Bigbee WL
    Biochemistry; 1976 Mar; 15(5):1103-11. PubMed ID: 814920
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The role of bound calcium ions in thermostable, proteolytic enzymes. II. Studies on thermolysin, the thermostable protease from Bacillus thermoproteolyticus.
    Voordouw G; Roche RS
    Biochemistry; 1975 Oct; 14(21):4667-73. PubMed ID: 1182109
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Studies on the formation and stability of a complex between Streptomyces proteinaceous metalloprotease inhibitor and thermolysin.
    Kunugi S; Yanagi Y; Oda K
    Eur J Biochem; 1999 Feb; 259(3):815-20. PubMed ID: 10092869
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A thermodynamic analysis of the binding of calcium and magnesium ions to parvalbumin.
    Moeschler HJ; Schaer JJ; Cox JA
    Eur J Biochem; 1980 Oct; 111(1):73-8. PubMed ID: 6777163
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of calcium ions in the thermostability of thermolysin and Bacillus subtilis var. amylosacchariticus neutral protease.
    Tajima M; Urabe I; Yutani K; Okada H
    Eur J Biochem; 1976 Apr; 64(1):243-7. PubMed ID: 819262
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Grafting of a calcium-binding loop of thermolysin to Bacillus subtilis neutral protease.
    Toma S; Campagnoli S; Margarit I; Gianna R; Grandi G; Bolognesi M; De Filippis V; Fontana A
    Biochemistry; 1991 Jan; 30(1):97-106. PubMed ID: 1899021
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermodynamics and kinetics of mouse prolactin-hepatic receptor interaction.
    Haro LS; Talamantes FJ
    Mol Cell Endocrinol; 1985 Dec; 43(2-3):199-204. PubMed ID: 3000853
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phosphorylation of calcium adenosinetriphosphatase by inorganic phosphate: van't Hoff analysis of enthalpy changes.
    Martin DW; Tanford C
    Biochemistry; 1981 Aug; 20(16):4597-602. PubMed ID: 6457627
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermodynamics of metal ion binding and denaturation of a calcium binding protein from Entamoeba histolytica.
    Gopal B; Swaminathan CP; Bhattacharya S; Bhattacharya A; Murthy MR; Surolia A
    Biochemistry; 1997 Sep; 36(36):10910-6. PubMed ID: 9283081
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pressure dependence of thermolysin catalysis.
    Fukuda M; Kunugi S
    Eur J Biochem; 1984 Aug; 142(3):565-70. PubMed ID: 6432533
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Binding thermodynamics of adenosine A2a receptor ligands.
    Borea PA; Dalpiaz A; Varani K; Guerra L; Gilli G
    Biochem Pharmacol; 1995 Feb; 49(4):461-9. PubMed ID: 7532939
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Isolated calcium-binding loops of EF-hand proteins can dimerize to form a native-like structure.
    Wójcik J; Góral J; Pawłowski K; Bierzyński A
    Biochemistry; 1997 Jan; 36(4):680-7. PubMed ID: 9020765
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kinetic and thermodynamic properties of the ternary complex between F-actin, myosin subfragment 1 and adenosine 5'-[beta, gamma-imido]triphosphate.
    Konrad M; Goody RS
    Eur J Biochem; 1982 Nov; 128(2-3):547-55. PubMed ID: 7151795
    [TBL] [Abstract][Full Text] [Related]  

  • 15. AMP interaction sites in glycogen phosphorylase b. A thermodynamic analysis.
    Menendez M; Solis D; Usobiaga P; Laynez J
    Biophys Chem; 1985 Mar; 21(3-4):249-60. PubMed ID: 2985138
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Raman spectroscopy of DNA-metal complexes. II. The thermal denaturation of DNA in the presence of Sr2+, Ba2+, Mg2+, Ca2+, Mn2+, Co2+, Ni2+, and Cd2+.
    Duguid JG; Bloomfield VA; Benevides JM; Thomas GJ
    Biophys J; 1995 Dec; 69(6):2623-41. PubMed ID: 8599669
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrostatic contributions to the binding of Ca2+ in calbindin D9k.
    Linse S; Johansson C; Brodin P; Grundström T; Drakenberg T; Forsén S
    Biochemistry; 1991 Jan; 30(1):154-62. PubMed ID: 1988017
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Magnetic resonance investigation of ionizable residues at the active site of thermolysin.
    Bigbee WL; Dahlquist FW
    Biochemistry; 1977 Aug; 16(17):3798-803. PubMed ID: 20127
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Melting-profile analysis of thermal stability of thermolysin. A formulation of temperature-scanning kinetics.
    Fujita SC; Go N; Imahori K
    Biochemistry; 1979 Jan; 18(1):24-8. PubMed ID: 420776
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure-function relationships in EF-hand Ca2+-binding proteins. Protein engineering and biophysical studies of calbindin D9k.
    Linse S; Brodin P; Drakenberg T; Thulin E; Sellers P; Elmdén K; Grundström T; Forsén S
    Biochemistry; 1987 Oct; 26(21):6723-35. PubMed ID: 2827733
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.