BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 37081097)

  • 1. Regulation of early diagnosis and prognostic markers of lung adenocarcinoma in immunity and hypoxia.
    Sun K; Zhang Z; Wang D; Huang Y; Zhang J; Lian C
    Sci Rep; 2023 Apr; 13(1):6459. PubMed ID: 37081097
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Integrated analysis of hypoxia-associated lncRNA signature to predict prognosis and immune microenvironment of lung adenocarcinoma patients.
    Shao J; Zhang B; Kuai L; Li Q
    Bioengineered; 2021 Dec; 12(1):6186-6200. PubMed ID: 34486476
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of 5-Gene Signature Improves Lung Adenocarcinoma Prognostic Stratification Based on Differential Expression Invasion Genes of Molecular Subtypes.
    Zheng Z; Deng W; Yang J
    Biomed Res Int; 2020; 2020():8832739. PubMed ID: 33490259
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hypoxia-related gene signature for predicting LUAD patients' prognosis and immune microenvironment.
    Chen J; Fu Y; Hu J; He J
    Cytokine; 2022 Apr; 152():155820. PubMed ID: 35176657
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Six CT83-related Genes-based Prognostic Signature for Lung Adenocarcinoma.
    Wang Y; Zhang G; Wang R
    Comb Chem High Throughput Screen; 2022; 25(9):1565-1575. PubMed ID: 34259140
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Construction of a hypoxic immune microenvironment associated gene-based model for prognosis prediction of lung adenocarcinoma.
    Lin GY; Wu S; Gao ZS; Wu LH; Yan JJ; Guo XQ; Wang ZY
    Eur Rev Med Pharmacol Sci; 2022 Jun; 26(11):3807-3826. PubMed ID: 35731050
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prognostic value of CCR2 as an immune indicator in lung adenocarcinoma: A study based on tumor-infiltrating immune cell analysis.
    Wan Y; Wang X; Liu T; Fan T; Zhang Z; Wang B; Zhang B; Tian Z; Mao T; Gong Z; Zhang L
    Cancer Med; 2021 Jun; 10(12):4150-4163. PubMed ID: 33949150
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Construction and validation of a hypoxia-related risk signature identified EXO1 as a prognostic biomarker based on 12 genes in lung adenocarcinoma.
    Chen Q; Chen S; Wang J; Zhao Y; Ye X; Fu Y; Liu Y
    Aging (Albany NY); 2023 Mar; 15(6):2293-2307. PubMed ID: 36971680
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Construction and validation of a prognostic model for lung adenocarcinoma based on endoplasmic reticulum stress-related genes.
    Li F; Niu Y; Zhao W; Yan C; Qi Y
    Sci Rep; 2022 Nov; 12(1):19857. PubMed ID: 36400857
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Risk-Assessing Signature Based on Hypoxia- and Immune-Related Genes for Prognosis of Lung Adenocarcinoma Patients.
    Wang Y; Feng J; Liu Y; Han T
    Comput Math Methods Med; 2022; 2022():7165851. PubMed ID: 36213576
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Overexpression of Family with Sequence Similarity 83, Member A (FAM83A) Predicts Poor Clinical Outcomes in Lung Adenocarcinoma.
    Zhang JT; Lin YC; Xiao BF; Yu BT
    Med Sci Monit; 2019 Jun; 25():4264-4272. PubMed ID: 31175804
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A promising prognostic signature for lung adenocarcinoma (LUAD) patients basing on 6 hypoxia-related genes.
    Luo J; Du X
    Medicine (Baltimore); 2021 Dec; 100(50):e28237. PubMed ID: 34918689
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Construction and Validation of Prognostic Risk Score Model of Autophagy Related Genes in Lung Adenocarcinoma].
    Zhou J; Wang X; Li Z; Jiang R
    Zhongguo Fei Ai Za Zhi; 2021 Aug; 24(8):557-566. PubMed ID: 34256900
    [TBL] [Abstract][Full Text] [Related]  

  • 14.
    Yu J; Hou M; Pei T
    DNA Cell Biol; 2020 May; 39(5):890-899. PubMed ID: 32282228
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Immune- and Stemness-Related Genes Revealed by Comprehensive Analysis and Validation for Cancer Immunity and Prognosis and Its Nomogram in Lung Adenocarcinoma.
    Chen M; Wang X; Wang W; Gui X; Li Z
    Front Immunol; 2022; 13():829057. PubMed ID: 35833114
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Elevated FAM83A expression predicts poorer clincal outcome in lung adenocarcinoma.
    Zhang J; Sun G; Mei X
    Cancer Biomark; 2019; 26(3):367-373. PubMed ID: 31594212
    [TBL] [Abstract][Full Text] [Related]  

  • 17. LncRNA FAM83A-AS1 facilitates tumor proliferation and the migration via the HIF-1α/ glycolysis axis in lung adenocarcinoma.
    Chen Z; Hu Z; Sui Q; Huang Y; Zhao M; Li M; Liang J; Lu T; Zhan C; Lin Z; Sun F; Wang Q; Tan L
    Int J Biol Sci; 2022; 18(2):522-535. PubMed ID: 35002507
    [No Abstract]   [Full Text] [Related]  

  • 18. Development of a gene signature associated with iron metabolism in lung adenocarcinoma.
    Qin J; Xu Z; Deng K; Qin F; Wei J; Yuan L; Sun Y; Zheng T; Li S
    Bioengineered; 2021 Dec; 12(1):4556-4568. PubMed ID: 34323652
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comprehensive Analysis and Reinforcement Learning of Hypoxic Genes Based on Four Machine Learning Algorithms for Estimating the Immune Landscape, Clinical Outcomes, and Therapeutic Implications in Patients With Lung Adenocarcinoma.
    Sun Z; Zeng Y; Yuan T; Chen X; Wang H; Ma X
    Front Immunol; 2022; 13():906889. PubMed ID: 35757722
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Establishment and validation of an immune-associated signature in lung adenocarcinoma.
    Wang Z; Chen X
    Int Immunopharmacol; 2020 Nov; 88():106867. PubMed ID: 32799112
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.