These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 37081246)

  • 1. Optimization design of a permanent magnet used for a low field (0.2 T) movable MRI system.
    Wei S; Wei Z; Wang Z; Wang H; He Q; He H; Li L; Yang W
    MAGMA; 2023 Jul; 36(3):409-418. PubMed ID: 37081246
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A high-field superferric NMR magnet.
    Huson FR; Bryan RN; MacKay WW; Herrick RC; Colvin J; Ford JJ; Pissanetzky S; Plishker GA; Rocha R; Schmidt W
    Magn Reson Med; 1993 Jan; 29(1):25-31. PubMed ID: 8419740
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Magnetic field shimming of a permanent magnet using a combination of pieces of permanent magnets and a single-channel shim coil for skeletal age assessment of children.
    Terada Y; Kono S; Ishizawa K; Inamura S; Uchiumi T; Tamada D; Kose K
    J Magn Reson; 2013 May; 230():125-33. PubMed ID: 23475056
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A novel passive shimming scheme using explicit control of magnetic field qualities with minimal use of ferromagnetic materials.
    Wang Y; Wang Q; Chen Z; Liu Y; Liu F
    Magn Reson Med; 2022 Dec; 88(6):2732-2744. PubMed ID: 36063495
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A novel electron gun for inline MRI-linac configurations.
    Constantin DE; Holloway L; Keall PJ; Fahrig R
    Med Phys; 2014 Feb; 41(2):022301. PubMed ID: 24506639
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On the passive shimming of a 7 T whole-body MRI superconducting magnet: Implementation with minimized ferromagnetic materials usage and operable magnetic force control.
    Wang W; Wang Y; Wang H; Cheng J; Qu H; Wang C; Niu C; Liu F
    Med Phys; 2023 Oct; 50(10):6514-6524. PubMed ID: 37287208
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A permanent MRI magnet for magic angle imaging having its field parallel to the poles.
    McGinley JV; Ristic M; Young IR
    J Magn Reson; 2016 Oct; 271():60-7. PubMed ID: 27552556
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rotatable Small Permanent Magnet Array for Ultra-Low Field Nuclear Magnetic Resonance Instrumentation: A Concept Study.
    Vogel MW; Giorni A; Vegh V; Pellicer-Guridi R; Reutens DC
    PLoS One; 2016; 11(6):e0157040. PubMed ID: 27271886
    [TBL] [Abstract][Full Text] [Related]  

  • 9. MagTetris: A simulator for fast magnetic field and force calculation for permanent magnet array designs.
    Liang TO; Koh YH; Qiu T; Li E; Yu W; Huang SY
    J Magn Reson; 2023 Jul; 352():107463. PubMed ID: 37207466
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A portable magnet for radiation biology and dosimetry studies in magnetic fields.
    Causer TJ; Rosenfeld AB; Metcalfe PE; Oborn BM
    Med Phys; 2022 Mar; 49(3):1924-1931. PubMed ID: 35023145
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A passive shimming method for Halbach magnet based on magnetic sheet arrays.
    Wang Y; Xu Y; Wang F; Zhang J; Peng B; Yu P; Yu Y; Yang X
    J Magn Reson; 2022 Jun; 339():107210. PubMed ID: 35447511
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A readout magnet for prepolarized MRI.
    Morgan P; Conolly S; Scott G; Macovski A
    Magn Reson Med; 1996 Oct; 36(4):527-36. PubMed ID: 8892203
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Variable magnet arrays to passively shim compact permanent-yoke magnets.
    Überrück T; Blümich B
    J Magn Reson; 2019 Jan; 298():77-84. PubMed ID: 30529894
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-performance permanent magnet array design by a fast genetic algorithm (GA)-based optimization for low-field portable MRI.
    Liang TO; Koh YH; Qiu T; Li E; Yu W; Huang SY
    J Magn Reson; 2022 Dec; 345():107309. PubMed ID: 36335876
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Passive Shimming of MRI Static Magnetic Field Using Regularization of Truncated Singular Value Decomposition.
    Abe M
    Magn Reson Med Sci; 2017 Oct; 16(4):284-296. PubMed ID: 28250355
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design of a mobile, homogeneous, and efficient electromagnet with a large field of view for neonatal low-field MRI.
    Lother S; Schiff SJ; Neuberger T; Jakob PM; Fidler F
    MAGMA; 2016 Aug; 29(4):691-8. PubMed ID: 26861046
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Theoretical foundation for designing multilayer Halbach array magnets for benchtop NMR and MRI.
    Yu P; Wang Y; Xu Y; Wu Z; Zhao Y; Peng B; Wang F; Tang Y; Yang X
    J Magn Reson; 2022 Nov; 344():107322. PubMed ID: 36332512
    [TBL] [Abstract][Full Text] [Related]  

  • 18. NMR magnets for portable applications using 3D printed materials.
    Alnajjar BMK; Buchau A; Baumgärtner L; Anders J
    J Magn Reson; 2021 May; 326():106934. PubMed ID: 33684681
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design of arbitrarily homogeneous permanent magnet systems for NMR and MRI: theory and experimental developments of a simple portable magnet.
    Hugon C; D'Amico F; Aubert G; Sakellariou D
    J Magn Reson; 2010 Jul; 205(1):75-85. PubMed ID: 20451431
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Simple Improvement for Permanent Magnet Systems for Kibble Balances: More Flat Field at Almost No Cost.
    Li S; Schlamminger S; Wang Q
    IEEE Trans Instrum Meas; 2020 Oct; 69(10):. PubMed ID: 34248181
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.