These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 37081386)

  • 1. Validation of genetic variants from NGS data using deep convolutional neural networks.
    Vaisband M; Schubert M; Gassner FJ; Geisberger R; Greil R; Zaborsky N; Hasenauer J
    BMC Bioinformatics; 2023 Apr; 24(1):158. PubMed ID: 37081386
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Machine learning random forest for predicting oncosomatic variant NGS analysis.
    Pellegrino E; Jacques C; Beaufils N; Nanni I; Carlioz A; Metellus P; Ouafik L
    Sci Rep; 2021 Nov; 11(1):21820. PubMed ID: 34750410
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A deep learning approach to automate refinement of somatic variant calling from cancer sequencing data.
    Ainscough BJ; Barnell EK; Ronning P; Campbell KM; Wagner AH; Fehniger TA; Dunn GP; Uppaluri R; Govindan R; Rohan TE; Griffith M; Mardis ER; Swamidass SJ; Griffith OL
    Nat Genet; 2018 Dec; 50(12):1735-1743. PubMed ID: 30397337
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Somatic and Germline Variant Calling from Next-Generation Sequencing Data.
    Chang TC; Xu K; Cheng Z; Wu G
    Adv Exp Med Biol; 2022; 1361():37-54. PubMed ID: 35230682
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deep learning in next-generation sequencing.
    Schmidt B; Hildebrandt A
    Drug Discov Today; 2021 Jan; 26(1):173-180. PubMed ID: 33059075
    [TBL] [Abstract][Full Text] [Related]  

  • 6. SNooPer: a machine learning-based method for somatic variant identification from low-pass next-generation sequencing.
    Spinella JF; Mehanna P; Vidal R; Saillour V; Cassart P; Richer C; Ouimet M; Healy J; Sinnett D
    BMC Genomics; 2016 Nov; 17(1):912. PubMed ID: 27842494
    [TBL] [Abstract][Full Text] [Related]  

  • 7. DeepSSV: detecting somatic small variants in paired tumor and normal sequencing data with convolutional neural network.
    Meng J; Victor B; He Z; Liu H; Jiang T
    Brief Bioinform; 2021 Jul; 22(4):. PubMed ID: 33164053
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A machine learning model to determine the accuracy of variant calls in capture-based next generation sequencing.
    van den Akker J; Mishne G; Zimmer AD; Zhou AY
    BMC Genomics; 2018 Apr; 19(1):263. PubMed ID: 29665779
    [TBL] [Abstract][Full Text] [Related]  

  • 9. DeepSV: accurate calling of genomic deletions from high-throughput sequencing data using deep convolutional neural network.
    Cai L; Wu Y; Gao J
    BMC Bioinformatics; 2019 Dec; 20(1):665. PubMed ID: 31830921
    [TBL] [Abstract][Full Text] [Related]  

  • 10. HELLO: improved neural network architectures and methodologies for small variant calling.
    Ramachandran A; Lumetta SS; Klee EW; Chen D
    BMC Bioinformatics; 2021 Aug; 22(1):404. PubMed ID: 34391391
    [TBL] [Abstract][Full Text] [Related]  

  • 11. MABAL: a Novel Deep-Learning Architecture for Machine-Assisted Bone Age Labeling.
    Mutasa S; Chang PD; Ruzal-Shapiro C; Ayyala R
    J Digit Imaging; 2018 Aug; 31(4):513-519. PubMed ID: 29404850
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Clair3-trio: high-performance Nanopore long-read variant calling in family trios with trio-to-trio deep neural networks.
    Su J; Zheng Z; Ahmed SS; Lam TW; Luo R
    Brief Bioinform; 2022 Sep; 23(5):. PubMed ID: 35849103
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bioinformatic data processing pipelines in support of next-generation sequencing-based HIV drug resistance testing: the Winnipeg Consensus.
    Ji H; Enns E; Brumme CJ; Parkin N; Howison M; Lee ER; Capina R; Marinier E; Avila-Rios S; Sandstrom P; Van Domselaar G; Harrigan R; Paredes R; Kantor R; Noguera-Julian M
    J Int AIDS Soc; 2018 Oct; 21(10):e25193. PubMed ID: 30350345
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cnngeno: A high-precision deep learning based strategy for the calling of structural variation genotype.
    Bai R; Ling C; Cai L; Gao J
    Comput Biol Chem; 2021 Oct; 94():107417. PubMed ID: 33810991
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Small training dataset convolutional neural networks for application-specific super-resolution microscopy.
    Mannam V; Howard S
    J Biomed Opt; 2023 Mar; 28(3):036501. PubMed ID: 36925620
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improved Manual Annotation of EEG Signals through Convolutional Neural Network Guidance.
    Diachenko M; Houtman SJ; Juarez-Martinez EL; Ramautar JR; Weiler R; Mansvelder HD; Bruining H; Bloem P; Linkenkaer-Hansen K
    eNeuro; 2022; 9(5):. PubMed ID: 36104277
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Machine learning models for accurate prioritization of variants of uncertain significance.
    Mahecha D; Nuñez H; Lattig MC; Duitama J
    Hum Mutat; 2022 Apr; 43(4):449-460. PubMed ID: 35143088
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A deep learning approach for filtering structural variants in short read sequencing data.
    Liu Y; Huang Y; Wang G; Wang Y
    Brief Bioinform; 2021 Jul; 22(4):. PubMed ID: 33378767
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Systematic comparison of germline variant calling pipelines cross multiple next-generation sequencers.
    Chen J; Li X; Zhong H; Meng Y; Du H
    Sci Rep; 2019 Jun; 9(1):9345. PubMed ID: 31249349
    [TBL] [Abstract][Full Text] [Related]  

  • 20. tarSVM: Improving the accuracy of variant calls derived from microfluidic PCR-based targeted next generation sequencing using a support vector machine.
    Gillies CE; Otto EA; Vega-Warner V; Robertson CC; Sanna-Cherchi S; Gharavi A; Crawford B; Bhimma R; Winkler C; ; ; Kang HM; Sampson MG
    BMC Bioinformatics; 2016 Jun; 17(1):233. PubMed ID: 27287006
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.