These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 37081714)

  • 1. Lithium Ferrocyanide Catholyte for High-Energy and Low-cost Aqueous Redox Flow Batteries.
    Li X; Yao Y; Liu C; Jia X; Jian J; Guo B; Lu S; Qin W; Wang Q; Wu X
    Angew Chem Int Ed Engl; 2023 Jun; 62(25):e202304667. PubMed ID: 37081714
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Doping Engineering of M-N-C Electrocatalyst Based Membrane-Electrode Assembly for High-Performance Aqueous Polysulfides Redox Flow Batteries.
    Chen B; Huang H; Lin J; Zhu K; Yang L; Wang X; Chen J
    Adv Sci (Weinh); 2023 Jun; 10(16):e2206949. PubMed ID: 37066747
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Redox-active Fe(CN)(6)(4-)-doped conducting polymers with greatly enhanced capacity as cathode materials for Li-ion batteries.
    Zhou M; Qian J; Ai X; Yang H
    Adv Mater; 2011 Nov; 23(42):4913-7. PubMed ID: 21972070
    [No Abstract]   [Full Text] [Related]  

  • 4. A Physical Organic Chemistry Approach to Developing Cyclopropenium-Based Energy Storage Materials for Redox Flow Batteries.
    Walser-Kuntz R; Yan Y; Sigman M; Sanford MS
    Acc Chem Res; 2023 May; 56(10):1239-1250. PubMed ID: 37094181
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An Energy-Dense, Powerful, Robust Bipolar Zinc-Ferrocene Redox-Flow Battery.
    Luo J; Hu B; Hu M; Wu W; Liu TL
    Angew Chem Int Ed Engl; 2022 Jul; 61(30):e202204030. PubMed ID: 35523722
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-energy density nonaqueous all redox flow lithium battery enabled with a polymeric membrane.
    Jia C; Pan F; Zhu YG; Huang Q; Lu L; Wang Q
    Sci Adv; 2015 Nov; 1(10):e1500886. PubMed ID: 26702440
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phenothiazine-Based Organic Catholyte for High-Capacity and Long-Life Aqueous Redox Flow Batteries.
    Zhang C; Niu Z; Peng S; Ding Y; Zhang L; Guo X; Zhao Y; Yu G
    Adv Mater; 2019 Jun; 31(24):e1901052. PubMed ID: 30998269
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exploring Carbonyl Chemistry in Non-aqueous Mg Flow Batteries.
    Qin Y; Holguin K; Fehlau D; Luo C; Gao T
    Chem Asian J; 2022 Nov; 17(21):e202200587. PubMed ID: 35994590
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Single-Molecule Redox-Targeting Reactions for a pH-Neutral Aqueous Organic Redox Flow Battery.
    Zhou M; Chen Y; Salla M; Zhang H; Wang X; Mothe SR; Wang Q
    Angew Chem Int Ed Engl; 2020 Aug; 59(34):14286-14291. PubMed ID: 32510721
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Integrating Reverse-Electrodialysis Stacks with Flow Batteries for Improved Energy Recovery from Salinity Gradients and Energy Storage.
    Zhu X; Kim T; Rahimi M; Gorski CA; Logan BE
    ChemSusChem; 2017 Feb; 10(4):797-803. PubMed ID: 27911491
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Energetic aqueous rechargeable sodium-ion battery based on Na2 CuFe(CN)6 -NaTi2 (PO4 )3 intercalation chemistry.
    Wu XY; Sun MY; Shen YF; Qian JF; Cao YL; Ai XP; Yang HX
    ChemSusChem; 2014 Feb; 7(2):407-11. PubMed ID: 24464957
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A pH-Neutral, Aqueous Redox Flow Battery with a 3600-Cycle Lifetime: Micellization-Enabled High Stability and Crossover Suppression.
    Chai J; Wang X; Lashgari A; Williams CK; Jiang JJ
    ChemSusChem; 2020 Aug; 13(16):4069-4077. PubMed ID: 32658334
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Highly Stable, Capacity Dense Carboxylate Viologen Anolyte towards Long-Duration Energy Storage.
    Wu W; Wang AP; Luo J; Liu TL
    Angew Chem Int Ed Engl; 2023 Feb; 62(7):e202216662. PubMed ID: 36526569
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Sustainable Redox-Flow Battery with an Aluminum-Based, Deep-Eutectic-Solvent Anolyte.
    Zhang C; Ding Y; Zhang L; Wang X; Zhao Y; Zhang X; Yu G
    Angew Chem Int Ed Engl; 2017 Jun; 56(26):7454-7459. PubMed ID: 28494114
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Organic Electroactive Materials for Aqueous Redox Flow Batteries.
    Yang G; Zhu Y; Hao Z; Lu Y; Zhao Q; Zhang K; Chen J
    Adv Mater; 2023 Aug; 35(33):e2301898. PubMed ID: 37158492
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Correlating Stability and Performance of NaSICON Membranes for Aqueous Redox Flow Batteries.
    Modak S; Valle J; Tseng KT; Sakamoto J; Kwabi DG
    ACS Appl Mater Interfaces; 2022 May; 14(17):19332-19341. PubMed ID: 35442617
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Vanadium Ferrocyanides as a Highly Stable Cathode for Lithium-Ion Batteries.
    Nguyen TP; Kim IT
    Molecules; 2023 Jan; 28(2):. PubMed ID: 36677524
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Material Design of Aqueous Redox Flow Batteries: Fundamental Challenges and Mitigation Strategies.
    Li Z; Lu YC
    Adv Mater; 2020 Nov; 32(47):e2002132. PubMed ID: 33094532
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Long-Cycling Aqueous Organic Redox Flow Battery (AORFB) toward Sustainable and Safe Energy Storage.
    Hu B; DeBruler C; Rhodes Z; Liu TL
    J Am Chem Soc; 2017 Jan; 139(3):1207-1214. PubMed ID: 27973765
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-Energy-Density Chelated Chromium Flow Battery Electrolyte at Neutral pH.
    Robb BH; Waters SE; Marshak MP
    Chem Asian J; 2022 Oct; 17(19):e202200700. PubMed ID: 35972999
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.