These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 37081788)

  • 21. Sensitivity analysis of metabolic cascades catalyzed by bifunctional enzymes.
    Ortega F; Ehrenberg M; Acerenza L; Westerhoff HV; Mas F; Cascante M
    Mol Biol Rep; 2002; 29(1-2):211-5. PubMed ID: 12241060
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Reversible Photoswitchable Inhibitors Generate Ultrasensitivity in Out-of-Equilibrium Enzymatic Reactions.
    Teders M; Pogodaev AA; Bojanov G; Huck WTS
    J Am Chem Soc; 2021 Apr; 143(15):5709-5716. PubMed ID: 33844531
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Protein-protein complexes can undermine ultrasensitivity-dependent biological adaptation.
    Jeynes-Smith C; Araujo RP
    J R Soc Interface; 2023 Jan; 20(198):20220553. PubMed ID: 36596458
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Robust network topologies for generating switch-like cellular responses.
    Shah NA; Sarkar CA
    PLoS Comput Biol; 2011 Jun; 7(6):e1002085. PubMed ID: 21731481
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Nonequilibrium Thermodynamics in Cell Biology: Extending Equilibrium Formalism to Cover Living Systems.
    Fang X; Wang J
    Annu Rev Biophys; 2020 May; 49():227-246. PubMed ID: 32375020
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Space-filling effects of inert solutes as probes for the detection and study of substrate-mediated conformational changes by enzyme kinetics: theoretical considerations.
    Bergman DA; Winzor DJ
    J Theor Biol; 1989 Mar; 137(2):171-89. PubMed ID: 2689796
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Irreversible thermodynamics of open chemical networks. I. Emergent cycles and broken conservation laws.
    Polettini M; Esposito M
    J Chem Phys; 2014 Jul; 141(2):024117. PubMed ID: 25028009
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Monostationarity and Multistationarity in Tree Networks of Goldbeter-Koshland Loops.
    Barabanschikov A; Gunawardena J
    Bull Math Biol; 2019 Jul; 81(7):2463-2509. PubMed ID: 31218553
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Modular rate laws for enzymatic reactions: thermodynamics, elasticities and implementation.
    Liebermeister W; Uhlendorf J; Klipp E
    Bioinformatics; 2010 Jun; 26(12):1528-34. PubMed ID: 20385728
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Thermodynamic constraints for biochemical networks.
    Beard DA; Babson E; Curtis E; Qian H
    J Theor Biol; 2004 Jun; 228(3):327-33. PubMed ID: 15135031
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Thermodynamic Activity-Based Progress Curve Analysis in Enzyme Kinetics.
    Pleiss J
    Trends Biotechnol; 2018 Mar; 36(3):234-238. PubMed ID: 29107319
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Thermodynamic constraints on the assembly and diversity of microbial ecosystems are different near to and far from equilibrium.
    Cook J; Pawar S; Endres RG
    PLoS Comput Biol; 2021 Dec; 17(12):e1009643. PubMed ID: 34860834
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Energy expenditure in the control of biochemical systems by covalent modification.
    Goldbeter A; Koshland DE
    J Biol Chem; 1987 Apr; 262(10):4460-71. PubMed ID: 3558349
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Optimal enzyme utilization suggests that concentrations and thermodynamics determine binding mechanisms and enzyme saturations.
    Sahin A; Weilandt DR; Hatzimanikatis V
    Nat Commun; 2023 May; 14(1):2618. PubMed ID: 37147292
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The determination of thermodynamic allosteric parameters of an enzyme undergoing steady-state turnover.
    Reinhart GD
    Arch Biochem Biophys; 1983 Jul; 224(1):389-401. PubMed ID: 6870263
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Thermodynamic and kinetic analysis of sensitivity amplification in biological signal transduction.
    Qian H
    Biophys Chem; 2003 Sep; 105(2-3):585-93. PubMed ID: 14499920
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Analysis of network motifs in cellular regulation: Structural similarities, input-output relations and signal integration.
    Straube R
    Biosystems; 2017 Dec; 162():215-232. PubMed ID: 29107640
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mathematical modelling of dynamics and control in metabolic networks. V. Static bifurcations in single biochemical control loops.
    Palsson BO; Lightfoot EN
    J Theor Biol; 1985 Mar; 113(2):279-98. PubMed ID: 3999779
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Energy-speed-accuracy relation in complex networks for biological discrimination.
    Wong F; Amir A; Gunawardena J
    Phys Rev E; 2018 Jul; 98(1-1):012420. PubMed ID: 30110782
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Exact and approximate solutions for the decades-old Michaelis-Menten equation: Progress-curve analysis through integrated rate equations.
    Goličnik M
    Biochem Mol Biol Educ; 2011; 39(2):117-25. PubMed ID: 21445903
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.