These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
122 related articles for article (PubMed ID: 37082185)
1. Coupled model for microbial growth and phase mass transfer in pressurized batch reactors in the context of underground hydrogen storage. Strobel G; Hagemann B; Lüddeke CT; Ganzer L Front Microbiol; 2023; 14():1150102. PubMed ID: 37082185 [TBL] [Abstract][Full Text] [Related]
2. Upflow anaerobic sludge blanket reactor--a review. Bal AS; Dhagat NN Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675 [TBL] [Abstract][Full Text] [Related]
3. Investigating the activity of indigenous microbial communities from Italian depleted gas reservoirs and their possible impact on underground hydrogen storage. Bellini R; Vasile NS; Bassani I; Vizzarro A; Coti C; Barbieri D; Scapolo M; Pirri CF; Verga F; Menin B Front Microbiol; 2024; 15():1392410. PubMed ID: 38725680 [TBL] [Abstract][Full Text] [Related]
4. Microbiological insight into various underground gas storages in Vienna Basin focusing on methanogenic Hanišáková N; Vítězová M; Vítěz T; Kushkevych I; Kotrlová E; Novák D; Lochman J; Zavada R Front Microbiol; 2023; 14():1293506. PubMed ID: 38188570 [TBL] [Abstract][Full Text] [Related]
5. Conversion of H2 and CO2 to CH4 and acetate in fed-batch biogas reactors by mixed biogas community: a novel route for the power-to-gas concept. Szuhaj M; Ács N; Tengölics R; Bodor A; Rákhely G; Kovács KL; Bagi Z Biotechnol Biofuels; 2016; 9():102. PubMed ID: 27168764 [TBL] [Abstract][Full Text] [Related]
6. Relevance of deep-subsurface microbiology for underground gas storage and geothermal energy production. Gniese C; Bombach P; Rakoczy J; Hoth N; Schlömann M; Richnow HH; Krüger M Adv Biochem Eng Biotechnol; 2014; 142():95-121. PubMed ID: 24311044 [TBL] [Abstract][Full Text] [Related]
7. Methanogenesis in thermophilic biogas reactors. Ahring BK Antonie Van Leeuwenhoek; 1995; 67(1):91-102. PubMed ID: 7741531 [TBL] [Abstract][Full Text] [Related]
8. Influence of operating pressure on the biological hydrogen methanation in trickle-bed reactors. Ullrich T; Lindner J; Bär K; Mörs F; Graf F; Lemmer A Bioresour Technol; 2018 Jan; 247():7-13. PubMed ID: 28942208 [TBL] [Abstract][Full Text] [Related]
9. Modelling of autogenerative high-pressure anaerobic digestion in a batch reactor for the production of pressurised biogas. De Crescenzo C; Marzocchella A; Karatza D; Molino A; Ceron-Chafla P; Lindeboom REF; van Lier JB; Chianese S; Musmarra D Biotechnol Biofuels Bioprod; 2022 Feb; 15(1):20. PubMed ID: 35418101 [TBL] [Abstract][Full Text] [Related]
10. Liquid-to-Gas Mass Transfer in Anaerobic Processes: Inevitable Transfer Limitations of Methane and Hydrogen in the Biomethanation Process. Pauss A; Andre G; Perrier M; Guiot SR Appl Environ Microbiol; 1990 Jun; 56(6):1636-44. PubMed ID: 16348206 [TBL] [Abstract][Full Text] [Related]
11. Determination of volumetric gas-liquid mass transfer coefficient of carbon monoxide in a batch cultivation system using kinetic simulations. Jang N; Yasin M; Park S; Lovitt RW; Chang IS Bioresour Technol; 2017 Sep; 239():387-393. PubMed ID: 28531864 [TBL] [Abstract][Full Text] [Related]
12. Pressurized cultivation strategies for improved microbial hydrogen production by Thermococcus onnurineus NA1. Kim MS; Moon M; Fitriana HN; Lee JS; Na JG; Park GW Bioprocess Biosyst Eng; 2020 Jun; 43(6):1119-1122. PubMed ID: 32002611 [TBL] [Abstract][Full Text] [Related]
13. Model-based data evaluation of polyhydroxybutyrate producing mixed microbial cultures in aerobic sequencing batch and fed-batch reactors. Johnson K; Kleerebezem R; van Loosdrecht MC Biotechnol Bioeng; 2009 Sep; 104(1):50-67. PubMed ID: 19472301 [TBL] [Abstract][Full Text] [Related]
14. Biocatalytic methanation of hydrogen and carbon dioxide in an anaerobic three-phase system. Burkhardt M; Koschack T; Busch G Bioresour Technol; 2015 Feb; 178():330-333. PubMed ID: 25193088 [TBL] [Abstract][Full Text] [Related]
15. A kinetic model for quantitative evaluation of the effect of hydrogen and osmolarity on hydrogen production by Caldicellulosiruptor saccharolyticus. Ljunggren M; Willquist K; Zacchi G; van Niel EW Biotechnol Biofuels; 2011 Sep; 4(1):31. PubMed ID: 21914204 [TBL] [Abstract][Full Text] [Related]
16. Bioconversion of carbon dioxide to methane using hydrogen and hydrogenotrophic methanogens. Zabranska J; Pokorna D Biotechnol Adv; 2018; 36(3):707-720. PubMed ID: 29248685 [TBL] [Abstract][Full Text] [Related]
17. Dynamic modeling of anaerobic methane oxidation coupled to sulfate reduction: role of elemental sulfur as intermediate. Hatzikioseyian A; Bhattarai S; Cassarini C; Esposito G; Lens PNL Bioprocess Biosyst Eng; 2021 Apr; 44(4):855-874. PubMed ID: 33566183 [TBL] [Abstract][Full Text] [Related]
18. Calibration of hydrodynamic behavior and biokinetics for TOC removal modeling in biofilm reactors under different hydraulic conditions. Zeng M; Soric A; Roche N Bioresour Technol; 2013 Sep; 144():202-9. PubMed ID: 23871921 [TBL] [Abstract][Full Text] [Related]
19. Steady state characteristics of acclimated hydrogenotrophic methanogens on inorganic substrate in continuous chemostat reactors. Ako OY; Kitamura Y; Intabon K; Satake T Bioresour Technol; 2008 Sep; 99(14):6305-10. PubMed ID: 18262412 [TBL] [Abstract][Full Text] [Related]