BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 37082199)

  • 1. The genetic basis of adaptation to copper pollution in
    Everman ER; Macdonald SJ; Kelly JK
    Front Genet; 2023; 14():1144221. PubMed ID: 37082199
    [No Abstract]   [Full Text] [Related]  

  • 2. Characterizing the genetic basis of copper toxicity in Drosophila reveals a complex pattern of allelic, regulatory, and behavioral variation.
    Everman ER; Cloud-Richardson KM; Macdonald SJ
    Genetics; 2021 Mar; 217(1):1-20. PubMed ID: 33683361
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dissection of Complex, Fitness-Related Traits in Multiple
    Everman ER; McNeil CL; Hackett JL; Bain CL; Macdonald SJ
    Genetics; 2019 Apr; 211(4):1449-1467. PubMed ID: 30760490
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gene expression variation underlying tissue-specific responses to copper stress in Drosophila melanogaster.
    Everman ER; Macdonald SJ
    G3 (Bethesda); 2024 Mar; 14(3):. PubMed ID: 38262701
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gene expression variation underlying tissue-specific responses to copper stress in
    Everman ER; Macdonald SJ
    bioRxiv; 2023 Jul; ():. PubMed ID: 37503205
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identifying Loci Contributing to Natural Variation in Xenobiotic Resistance in Drosophila.
    Najarro MA; Hackett JL; Smith BR; Highfill CA; King EG; Long AD; Macdonald SJ
    PLoS Genet; 2015 Nov; 11(11):e1005663. PubMed ID: 26619284
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Drosophila model for toxicogenomics: Genetic variation in susceptibility to heavy metal exposure.
    Zhou S; Luoma SE; St Armour GE; Thakkar E; Mackay TFC; Anholt RRH
    PLoS Genet; 2017 Jul; 13(7):e1006907. PubMed ID: 28732062
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genetic basis of variation in cocaine and methamphetamine consumption in outbred populations of
    Baker BM; Carbone MA; Huang W; Anholt RRH; Mackay TFC
    Proc Natl Acad Sci U S A; 2021 Jun; 118(23):. PubMed ID: 34074789
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Beavis Effect in Next-Generation Mapping Panels in
    King EG; Long AD
    G3 (Bethesda); 2017 Jun; 7(6):1643-1652. PubMed ID: 28592647
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Loci Contributing to Boric Acid Toxicity in Two Reference Populations of
    Najarro MA; Hackett JL; Macdonald SJ
    G3 (Bethesda); 2017 Jun; 7(6):1631-1641. PubMed ID: 28592646
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The genomic basis of copper tolerance in Drosophila is shaped by a complex interplay of regulatory and environmental factors.
    Green L; Coronado-Zamora M; Radío S; Rech GE; Salces-Ortiz J; González J
    BMC Biol; 2022 Dec; 20(1):275. PubMed ID: 36482348
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genetic analysis of variation in lifespan using a multiparental advanced intercross Drosophila mapping population.
    Highfill CA; Reeves GA; Macdonald SJ
    BMC Genet; 2016 Aug; 17():113. PubMed ID: 27485207
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genome-wide association analysis of oxidative stress resistance in Drosophila melanogaster.
    Weber AL; Khan GF; Magwire MM; Tabor CL; Mackay TF; Anholt RR
    PLoS One; 2012; 7(4):e34745. PubMed ID: 22496853
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Whole-Genome Resequencing of Experimental Populations Reveals Polygenic Basis of Egg-Size Variation in Drosophila melanogaster.
    Jha AR; Miles CM; Lippert NR; Brown CD; White KP; Kreitman M
    Mol Biol Evol; 2015 Oct; 32(10):2616-32. PubMed ID: 26044351
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Natural variation in genome architecture among 205 Drosophila melanogaster Genetic Reference Panel lines.
    Huang W; Massouras A; Inoue Y; Peiffer J; Ràmia M; Tarone AM; Turlapati L; Zichner T; Zhu D; Lyman RF; Magwire MM; Blankenburg K; Carbone MA; Chang K; Ellis LL; Fernandez S; Han Y; Highnam G; Hjelmen CE; Jack JR; Javaid M; Jayaseelan J; Kalra D; Lee S; Lewis L; Munidasa M; Ongeri F; Patel S; Perales L; Perez A; Pu L; Rollmann SM; Ruth R; Saada N; Warner C; Williams A; Wu YQ; Yamamoto A; Zhang Y; Zhu Y; Anholt RR; Korbel JO; Mittelman D; Muzny DM; Gibbs RA; Barbadilla A; Johnston JS; Stone EA; Richards S; Deplancke B; Mackay TF
    Genome Res; 2014 Jul; 24(7):1193-208. PubMed ID: 24714809
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Genetic Basis for Variation in Sensitivity to Lead Toxicity in Drosophila melanogaster.
    Zhou S; Morozova TV; Hussain YN; Luoma SE; McCoy L; Yamamoto A; Mackay TF; Anholt RR
    Environ Health Perspect; 2016 Jul; 124(7):1062-70. PubMed ID: 26859824
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of natural variation reveals neurogenetic networks for Drosophila olfactory behavior.
    Swarup S; Huang W; Mackay TF; Anholt RR
    Proc Natl Acad Sci U S A; 2013 Jan; 110(3):1017-22. PubMed ID: 23277560
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Using Drosophila melanogaster to identify chemotherapy toxicity genes.
    King EG; Kislukhin G; Walters KN; Long AD
    Genetics; 2014 Sep; 198(1):31-43. PubMed ID: 25236447
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The four members of the Drosophila metallothionein family exhibit distinct yet overlapping roles in heavy metal homeostasis and detoxification.
    Egli D; Domènech J; Selvaraj A; Balamurugan K; Hua H; Capdevila M; Georgiev O; Schaffner W; Atrian S
    Genes Cells; 2006 Jun; 11(6):647-58. PubMed ID: 16716195
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genetic architecture of natural variation in Drosophila melanogaster aggressive behavior.
    Shorter J; Couch C; Huang W; Carbone MA; Peiffer J; Anholt RR; Mackay TF
    Proc Natl Acad Sci U S A; 2015 Jul; 112(27):E3555-63. PubMed ID: 26100892
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.