These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 37082303)

  • 1. Driving event recognition using machine learning and smartphones.
    Bin Jamal Mohd Lokman EH; Goh VT; Yap TTV; Ng H
    F1000Res; 2022; 11():57. PubMed ID: 37082303
    [No Abstract]   [Full Text] [Related]  

  • 2. Evaluation of 1D and 2D Deep Convolutional Neural Networks for Driving Event Recognition.
    Escottá ÁT; Beccaro W; Ramírez MA
    Sensors (Basel); 2022 Jun; 22(11):. PubMed ID: 35684848
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Driver Behavior Profiling and Recognition Using Deep-Learning Methods: In Accordance with Traffic Regulations and Experts Guidelines.
    Al-Hussein WA; Por LY; Kiah MLM; Zaidan BB
    Int J Environ Res Public Health; 2022 Jan; 19(3):. PubMed ID: 35162493
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Event-related driver stress detection with smartphones among young novice drivers.
    Zhou X; Ma L; Zhang W
    Ergonomics; 2022 Aug; 65(8):1154-1172. PubMed ID: 34919031
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Novel Model-Based Driving Behavior Recognition System Using Motion Sensors.
    Wu M; Zhang S; Dong Y
    Sensors (Basel); 2016 Oct; 16(10):. PubMed ID: 27775625
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Machine-Learning Approach to Distinguish Passengers and Drivers Reading While Driving.
    Torres R; Ohashi O; Pessin G
    Sensors (Basel); 2019 Jul; 19(14):. PubMed ID: 31330929
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Driver behavior profiling: An investigation with different smartphone sensors and machine learning.
    Ferreira J; Carvalho E; Ferreira BV; de Souza C; Suhara Y; Pentland A; Pessin G
    PLoS One; 2017; 12(4):e0174959. PubMed ID: 28394925
    [TBL] [Abstract][Full Text] [Related]  

  • 8. INIM: Inertial Images Construction with Applications to Activity Recognition.
    Daniel N; Klein I
    Sensors (Basel); 2021 Jul; 21(14):. PubMed ID: 34300524
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Vision-Based Driver's Cognitive Load Classification Considering Eye Movement Using Machine Learning and Deep Learning.
    Rahman H; Ahmed MU; Barua S; Funk P; Begum S
    Sensors (Basel); 2021 Nov; 21(23):. PubMed ID: 34884021
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Single Camera Face Position-Invariant Driver's Gaze Zone Classifier Based on Frame-Sequence Recognition Using 3D Convolutional Neural Networks.
    Lollett C; Kamezaki M; Sugano S
    Sensors (Basel); 2022 Aug; 22(15):. PubMed ID: 35957412
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Hybrid Model for Driver Emotion Detection Using Feature Fusion Approach.
    Sukhavasi SB; Sukhavasi SB; Elleithy K; El-Sayed A; Elleithy A
    Int J Environ Res Public Health; 2022 Mar; 19(5):. PubMed ID: 35270777
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Driving behavior analysis and classification by vehicle OBD data using machine learning.
    Kumar R; Jain A
    J Supercomput; 2023 May; ():1-20. PubMed ID: 37359337
    [TBL] [Abstract][Full Text] [Related]  

  • 13. DRER: Deep Learning-Based Driver's Real Emotion Recognizer.
    Oh G; Ryu J; Jeong E; Yang JH; Hwang S; Lee S; Lim S
    Sensors (Basel); 2021 Mar; 21(6):. PubMed ID: 33808922
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deep Learning-Based Human Activity Real-Time Recognition for Pedestrian Navigation.
    Ye J; Li X; Zhang X; Zhang Q; Chen W
    Sensors (Basel); 2020 Apr; 20(9):. PubMed ID: 32366055
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sensor-Based Classification of Primary and Secondary Car Driver Activities Using Convolutional Neural Networks.
    Doniec R; Konior J; Sieciński S; Piet A; Irshad MT; Piaseczna N; Hasan MA; Li F; Nisar MA; Grzegorzek M
    Sensors (Basel); 2023 Jun; 23(12):. PubMed ID: 37420718
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Temporal analysis of driving efficiency using smartphone data.
    Tselentis DI; Vlahogianni EI; Yannis G
    Accid Anal Prev; 2021 May; 154():106081. PubMed ID: 33714844
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Developing a Machine Learning Algorithm to Predict the Probability of Medical Staff Work Mode Using Human-Smartphone Interaction Patterns: Algorithm Development and Validation Study.
    Chen HH; Lu HH; Weng WH; Lin YH
    J Med Internet Res; 2023 Dec; 25():e48834. PubMed ID: 38157232
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Using a Hybrid Neural Network and a Regularized Extreme Learning Machine for Human Activity Recognition with Smartphone and Smartwatch.
    Tan TH; Shih JY; Liu SH; Alkhaleefah M; Chang YL; Gochoo M
    Sensors (Basel); 2023 Mar; 23(6):. PubMed ID: 36992065
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Unusual Driver Behavior Detection in Videos Using Deep Learning Models.
    Abosaq HA; Ramzan M; Althobiani F; Abid A; Aamir KM; Abdushkour H; Irfan M; Gommosani ME; Ghonaim SM; Shamji VR; Rahman S
    Sensors (Basel); 2022 Dec; 23(1):. PubMed ID: 36616911
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A proactive lane-changing risk prediction framework considering driving intention recognition and different lane-changing patterns.
    Shangguan Q; Fu T; Wang J; Fang S; Fu L
    Accid Anal Prev; 2022 Jan; 164():106500. PubMed ID: 34823098
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.