BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 37082320)

  • 1. Inference of future bog succession trajectory from spatial chronosequence of changing aapa mires.
    Kolari THM; Tahvanainen T
    Ecol Evol; 2023 Apr; 13(4):e9988. PubMed ID: 37082320
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Accelerated vegetation succession but no hydrological change in a boreal fen during 20 years of recent climate change.
    Kolari THM; Korpelainen P; Kumpula T; Tahvanainen T
    Ecol Evol; 2021 Jun; 11(12):7602-7621. PubMed ID: 34188838
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Widespread recent ecosystem state shifts in high-latitude peatlands of northeastern Canada and implications for carbon sequestration.
    Magnan G; Sanderson NK; Piilo S; Pratte S; Väliranta M; van Bellen S; Zhang H; Garneau M
    Glob Chang Biol; 2022 Mar; 28(5):1919-1934. PubMed ID: 34882914
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Similar cation exchange capacities among bryophyte species refute a presumed mechanism of peatland acidification.
    Soudzilovskaia NA; Cornelissen JH; During HJ; van Logtestijn RS; Lang SI; Aerts R
    Ecology; 2010 Sep; 91(9):2716-26. PubMed ID: 20957965
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of carbon and nitrogen accumulation rate between bog and fen phases in a pristine peatland with the fen-bog transition.
    Yang Q; Liu Z; Bai E
    Glob Chang Biol; 2023 Nov; 29(22):6350-6366. PubMed ID: 37602716
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Methane production and oxidation potentials along a fen-bog gradient from southern boreal to subarctic peatlands in Finland.
    Zhang H; Tuittila ES; Korrensalo A; Laine AM; Uljas S; Welti N; Kerttula J; Maljanen M; Elliott D; Vesala T; Lohila A
    Glob Chang Biol; 2021 Sep; 27(18):4449-4464. PubMed ID: 34091981
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Measuring restoration progress using pore- and surface-water chemistry across a chronosequence of formerly afforested blanket bogs.
    Gaffney PPJ; Hancock MH; Taggart MA; Andersen R
    J Environ Manage; 2018 Aug; 219():239-251. PubMed ID: 29751255
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fine-scale horizontal and vertical micro-distribution patterns of testate amoebae along a narrow Fen/Bog gradient.
    Jassey VE; Chiapusio G; Mitchell EA; Binet P; Toussaint ML; Gilbert D
    Microb Ecol; 2011 Feb; 61(2):374-85. PubMed ID: 20938656
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Will climate change cause the global peatland to expand or contract? Evidence from the habitat shift pattern of Sphagnum mosses.
    Ma XY; Xu H; Cao ZY; Shu L; Zhu RL
    Glob Chang Biol; 2022 Nov; 28(21):6419-6432. PubMed ID: 35900846
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Can Sphagnum removal reverse the undesired succession of rich fens under different alkalinity and fertility levels?
    Singh P; Hájková P; Jiroušek M; Lizoňová Z; Peterka T; Plesková Z; Šímová A; Šmerdová E; Štechová T; Hájek M
    Ecol Appl; 2022 Dec; 32(8):e2691. PubMed ID: 35697659
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Water level drawdown makes boreal peatland vegetation more responsive to weather conditions.
    Köster E; Chapman JPB; Barel JM; Korrensalo A; Laine AM; Vasander HT; Tuittila ES
    Glob Chang Biol; 2023 Oct; 29(19):5691-5705. PubMed ID: 37577794
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sphagnum growth and ecophysiology during mire succession.
    Laine AM; Juurola E; Hájek T; Tuittila ES
    Oecologia; 2011 Dec; 167(4):1115-25. PubMed ID: 21656299
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Plant organic matter inputs exert a strong control on soil organic matter decomposition in a thawing permafrost peatland.
    Wilson RM; Hough MA; Verbeke BA; Hodgkins SB; ; Chanton JP; Saleska SD; Rich VI; Tfaily MM
    Sci Total Environ; 2022 May; 820():152757. PubMed ID: 35031367
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Revegetation of peat excavations in a derelict raised bog.
    Jane Smart P; Wheeler BD; Willis AJ
    New Phytol; 1989 Apr; 111(4):733-748. PubMed ID: 33874073
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Growth, production and interspecific competition in Sphagnum: effects of temperature, nitrogen and sulphur treatments on a boreal mire.
    Gunnarsson U; Granberg G; Nilsson M
    New Phytol; 2004 Aug; 163(2):349-359. PubMed ID: 33873612
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ecophysiological mechanisms characterising fen and bog species: focus on variations in nitrogen uptake traits under different soil-water pH.
    Nakamura T; Nakamura M
    Oecologia; 2012 Apr; 168(4):913-21. PubMed ID: 22009342
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rapid ecosystem shifts in peatlands: linking plant physiology and succession.
    Granath G; Strengbom J; Rydin H
    Ecology; 2010 Oct; 91(10):3047-56. PubMed ID: 21058564
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Control of carbon and nitrogen accumulation by vegetation in pristine bogs of southern Patagonia.
    Schuster W; Knorr KH; Blodau C; Gałka M; Borken W; Pancotto VA; Kleinebecker T
    Sci Total Environ; 2022 Mar; 810():151293. PubMed ID: 34756900
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Methane flux dynamics during mire succession.
    Leppälä M; Oksanen J; Tuittila ES
    Oecologia; 2011 Feb; 165(2):489-99. PubMed ID: 20803033
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamics of Viral Abundance and Diversity in a Sphagnum-Dominated Peatland: Temporal Fluctuations Prevail Over Habitat.
    Ballaud F; Dufresne A; Francez AJ; Colombet J; Sime-Ngando T; Quaiser A
    Front Microbiol; 2015; 6():1494. PubMed ID: 26779149
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.