These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 37082348)

  • 21. The NAC transcription factor FaRIF controls fruit ripening in strawberry.
    Martín-Pizarro C; Vallarino JG; Osorio S; Meco V; Urrutia M; Pillet J; Casañal A; Merchante C; Amaya I; Willmitzer L; Fernie AR; Giovannoni JJ; Botella MA; Valpuesta V; Posé D
    Plant Cell; 2021 Jul; 33(5):1574-1593. PubMed ID: 33624824
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Gene expression and metabolite accumulation during strawberry (Fragaria × ananassa) fruit development and ripening.
    Baldi P; Orsucci S; Moser M; Brilli M; Giongo L; Si-Ammour A
    Planta; 2018 Nov; 248(5):1143-1157. PubMed ID: 30066220
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Metabolic alterations in organic acids and gamma-aminobutyric acid in developing tomato (Solanum lycopersicum L.) fruits.
    Yin YG; Tominaga T; Iijima Y; Aoki K; Shibata D; Ashihara H; Nishimura S; Ezura H; Matsukura C
    Plant Cell Physiol; 2010 Aug; 51(8):1300-14. PubMed ID: 20595461
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Light Quality and Sucrose-Regulated Detached Ripening of Strawberry with Possible Involvement of Abscisic Acid and Auxin Signaling.
    Jiang L; Chen X; Gu X; Deng M; Li X; Zhou A; Suo M; Gao W; Lin Y; Wang Y; He W; Li M; Chen Q; Zhang Y; Luo Y; Wang X; Tang H; Zhang Y
    Int J Mol Sci; 2023 Mar; 24(6):. PubMed ID: 36982763
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Comparative Transcriptome Analysis Reveals the Influence of Abscisic Acid on the Metabolism of Pigments, Ascorbic Acid and Folic Acid during Strawberry Fruit Ripening.
    Li D; Li L; Luo Z; Mou W; Mao L; Ying T
    PLoS One; 2015; 10(6):e0130037. PubMed ID: 26053069
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Transcriptome analysis of strawberry fruit in response to exogenous arginine.
    Lv J; Pang Q; Chen X; Li T; Fang J; Lin S; Jia H
    Planta; 2020 Oct; 252(5):82. PubMed ID: 33040169
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The protein kinase FaSnRK1α regulates sucrose accumulation in strawberry fruits.
    Luo J; Peng F; Zhang S; Xiao Y; Zhang Y
    Plant Physiol Biochem; 2020 Jun; 151():369-377. PubMed ID: 32276220
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Quantitative proteomic investigation employing stable isotope labeling by peptide dimethylation on proteins of strawberry fruit at different ripening stages.
    Li L; Song J; Kalt W; Forney C; Tsao R; Pinto D; Chisholm K; Campbell L; Fillmore S; Li X
    J Proteomics; 2013 Dec; 94():219-39. PubMed ID: 24075981
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Metabolic Profile of Strawberry Fruit Ripened on the Plant Following Treatment With an Ethylene Elicitor or Inhibitor.
    Reis L; Forney CF; Jordan M; Munro Pennell K; Fillmore S; Schemberger MO; Ayub RA
    Front Plant Sci; 2020; 11():995. PubMed ID: 32754175
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Analysis of eight phytohormone concentrations, expression levels of ABA biosynthesis genes, and ripening-related transcription factors during fruit development in strawberry.
    Kim J; Lee JG; Hong Y; Lee EJ
    J Plant Physiol; 2019 Aug; 239():52-60. PubMed ID: 31185317
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Transcription factor FvTCP9 promotes strawberry fruit ripening by regulating the biosynthesis of abscisic acid and anthocyanins.
    Xie YG; Ma YY; Bi PP; Wei W; Liu J; Hu Y; Gou YJ; Zhu D; Wen YQ; Feng JY
    Plant Physiol Biochem; 2020 Jan; 146():374-383. PubMed ID: 31794898
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Genome-wide identification and expression profiling reveal the regulatory role of U-box E3 ubiquitin ligase genes in strawberry fruit ripening and abiotic stresses resistance.
    Jiang L; Lin Y; Wang L; Peng Y; Yang M; Jiang Y; Hou G; Liu X; Li M; Zhang Y; Zhang Y; Chen Q; Wang Y; He W; Wang X; Tang H; Luo Y
    Front Plant Sci; 2023; 14():1171056. PubMed ID: 37035055
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [Changes in glycosidases and cellulase activities, and cell wall composition in strawberry fruits during development and ripening].
    Xue BY; Mao ZQ; Shu HR
    Zhi Wu Sheng Li Yu Fen Zi Sheng Wu Xue Xue Bao; 2006 Jun; 32(3):363-8. PubMed ID: 16775406
    [TBL] [Abstract][Full Text] [Related]  

  • 34. MAPK5 and MAPK10 overexpression influences strawberry fruit ripening, antioxidant capacity and resistance to Botrytis cinerea.
    Zhang Y; Long Y; Liu Y; Yang M; Wang L; Liu X; Zhang Y; Chen Q; Li M; Lin Y; Tang H; Luo Y
    Planta; 2021 Dec; 255(1):19. PubMed ID: 34894292
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Integrative Analysis of Metabolome and Transcriptome Reveals Molecular Insight into Metabolomic Variations during Hawthorn Fruit Development.
    Wang Y; Hao R; Guo R; Nong H; Qin Y; Dong N
    Metabolites; 2023 Mar; 13(3):. PubMed ID: 36984863
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Strawberry soluble solids QTL with inverse effects on yield.
    Fan Z; Verma S; Lee H; Jang YJ; Wang Y; Lee S; Whitaker VM
    Hortic Res; 2024 Feb; 11(2):uhad271. PubMed ID: 38371635
    [TBL] [Abstract][Full Text] [Related]  

  • 37.
    Yi SN; Mao JX; Zhang XY; Li XM; Zhang ZH; Li H
    Front Plant Sci; 2022; 13():1023739. PubMed ID: 36388474
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Catabolite regulation analysis of Escherichia coli for acetate overflow mechanism and co-consumption of multiple sugars based on systems biology approach using computer simulation.
    Matsuoka Y; Shimizu K
    J Biotechnol; 2013 Oct; 168(2):155-73. PubMed ID: 23850830
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Phosphoenolpyruvate carboxykinase (PEPCK) deficiency affects the germination, growth and fruit sugar content in tomato (Solanum lycopersicum L.).
    Huang YX; Yin YG; Sanuki A; Fukuda N; Ezura H; Matsukura C
    Plant Physiol Biochem; 2015 Nov; 96():417-25. PubMed ID: 26381194
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Phosphoenolpyruvate carboxykinase, pyruvate orthophosphate dikinase and isocitrate lyase in both tomato fruits and leaves, and in the flesh of peach and some other fruits.
    Famiani F; Paoletti A; Battistelli A; Moscatello S; Chen ZH; Leegood RC; Walker RP
    J Plant Physiol; 2016 Sep; 202():34-44. PubMed ID: 27450492
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.