These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
180 related articles for article (PubMed ID: 37083140)
21. Self-recognition mechanism between skin and suckers prevents octopus arms from interfering with each other. Nesher N; Levy G; Grasso FW; Hochner B Curr Biol; 2014 Jun; 24(11):1271-5. PubMed ID: 24835454 [TBL] [Abstract][Full Text] [Related]
22. An octopus-bioinspired solution to movement and manipulation for soft robots. Calisti M; Giorelli M; Levy G; Mazzolai B; Hochner B; Laschi C; Dario P Bioinspir Biomim; 2011 Sep; 6(3):036002. PubMed ID: 21670493 [TBL] [Abstract][Full Text] [Related]
23. A novel underwater bipedal walking soft robot bio-inspired by the coconut octopus. Wu Q; Yang X; Wu Y; Zhou Z; Wang J; Zhang B; Luo Y; Chepinskiy SA; Zhilenkov AA Bioinspir Biomim; 2021 Jun; 16(4):. PubMed ID: 33836505 [TBL] [Abstract][Full Text] [Related]
24. Kinematic decomposition and classification of octopus arm movements. Zelman I; Titon M; Yekutieli Y; Hanassy S; Hochner B; Flash T Front Comput Neurosci; 2013; 7():60. PubMed ID: 23745113 [TBL] [Abstract][Full Text] [Related]
25. Octopus arm movements under constrained conditions: adaptation, modification and plasticity of motor primitives. Richter JN; Hochner B; Kuba MJ J Exp Biol; 2015 Apr; 218(Pt 7):1069-76. PubMed ID: 25687436 [TBL] [Abstract][Full Text] [Related]
26. 3D octopus kinematics of complex postures: Translation to long, thin, soft devices and their potential for clinical use. Weidig G; Bush B; Jimenez F; Pelled G; Bush TR PLoS One; 2024; 19(5):e0303608. PubMed ID: 38809854 [TBL] [Abstract][Full Text] [Related]
27. Neuromuscular system of the flexible arm of the octopus: physiological characterization. Matzner H; Gutfreund Y; Hochner B J Neurophysiol; 2000 Mar; 83(3):1315-28. PubMed ID: 10712459 [TBL] [Abstract][Full Text] [Related]
28. Embodied mechanisms of motor control in the octopus. Hochner B; Zullo L; Shomrat T; Levy G; Nesher N Curr Biol; 2023 Oct; 33(20):R1119-R1125. PubMed ID: 37875094 [TBL] [Abstract][Full Text] [Related]
29. Use of Peripheral Sensory Information for Central Nervous Control of Arm Movement by Octopus vulgaris. Gutnick T; Zullo L; Hochner B; Kuba MJ Curr Biol; 2020 Nov; 30(21):4322-4327.e3. PubMed ID: 32916119 [TBL] [Abstract][Full Text] [Related]
32. Identification of neural progenitor cells and their progeny reveals long distance migration in the developing octopus brain. Deryckere A; Styfhals R; Elagoz AM; Maes GE; Seuntjens E Elife; 2021 Aug; 10():. PubMed ID: 34425939 [TBL] [Abstract][Full Text] [Related]
33. Nonsomatotopic organization of the higher motor centers in octopus. Zullo L; Sumbre G; Agnisola C; Flash T; Hochner B Curr Biol; 2009 Oct; 19(19):1632-6. PubMed ID: 19765993 [TBL] [Abstract][Full Text] [Related]
34. Motor control pathways in the nervous system of Octopus vulgaris arm. Zullo L; Eichenstein H; Maiole F; Hochner B J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2019 Apr; 205(2):271-279. PubMed ID: 30919046 [TBL] [Abstract][Full Text] [Related]
36. When an octopus has MS: Application of neurophysiology and immunology of octopuses for multiple sclerosis. Naser Moghadasi A Med Hypotheses; 2019 Oct; 131():109297. PubMed ID: 31443774 [TBL] [Abstract][Full Text] [Related]
37. How octopus arm muscle contractile properties and anatomical organization contribute to arm functional specialization. Zullo L; Di Clemente A; Maiole F J Exp Biol; 2022 Mar; 225(6):. PubMed ID: 35244172 [TBL] [Abstract][Full Text] [Related]
38. Structure and mechanical properties of Octopus vulgaris suckers. Tramacere F; Kovalev A; Kleinteich T; Gorb SN; Mazzolai B J R Soc Interface; 2014 Feb; 11(91):20130816. PubMed ID: 24284894 [TBL] [Abstract][Full Text] [Related]