These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 37083316)

  • 1. Quantum-Coherence-Enhanced Hot-Electron Injection under Modal Strong Coupling.
    Liu YE; Shi X; Yokoyama T; Inoue S; Sunaba Y; Oshikiri T; Sun Q; Tamura M; Ishihara H; Sasaki K; Misawa H
    ACS Nano; 2023 May; 17(9):8315-8323. PubMed ID: 37083316
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhanced water splitting under modal strong coupling conditions.
    Shi X; Ueno K; Oshikiri T; Sun Q; Sasaki K; Misawa H
    Nat Nanotechnol; 2018 Oct; 13(10):953-958. PubMed ID: 30061658
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Boosting Hydrogen Evolution at Visible Light Wavelengths by Using a Photocathode with Modal Strong Coupling between Plasmons and a Fabry-Pérot Nanocavity.
    Oshikiri T; Jo H; Shi X; Misawa H
    Chemistry; 2022 Apr; 28(24):e202200288. PubMed ID: 35187736
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Water Oxidation under Modal Ultrastrong Coupling Conditions Using Gold/Silver Alloy Nanoparticles and Fabry-Pérot Nanocavities.
    Suganami Y; Oshikiri T; Shi X; Misawa H
    Angew Chem Int Ed Engl; 2021 Aug; 60(34):18438-18442. PubMed ID: 34137154
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Improved water splitting efficiency of Au-NP-loaded Ga
    Wang Y; Shi X; Oshikiri T; Misawa H
    Nanoscale Adv; 2022 Dec; 5(1):119-123. PubMed ID: 36605794
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhancing plasmonic hot-carrier generation by strong coupling of multiple resonant modes.
    Wong YL; Jia H; Jian A; Lei D; El Abed AI; Zhang X
    Nanoscale; 2021 Feb; 13(5):2792-2800. PubMed ID: 33491704
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Efficient energy exchange between plasmon and cavity modes via Rabi-analogue splitting in a hybrid plasmonic nanocavity.
    Chen S; Li G; Lei D; Cheah KW
    Nanoscale; 2013 Oct; 5(19):9129-33. PubMed ID: 23913114
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantum Electrodynamic Behavior of Chlorophyll in a Plasmonic Nanocavity.
    Kokin E; An HJ; Koo D; Han S; Whang K; Kang T; Choi I; Lee LP
    Nano Lett; 2022 Dec; 22(24):9861-9868. PubMed ID: 36484527
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Plasmon Enhanced Internal Photoemission in Antenna-Spacer-Mirror Based Au/TiO₂ Nanostructures.
    Fang Y; Jiao Y; Xiong K; Ogier R; Yang ZJ; Gao S; Dahlin AB; Käll M
    Nano Lett; 2015 Jun; 15(6):4059-65. PubMed ID: 25938263
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Understanding the mechanism of plasmon-driven water splitting: hot electron injection and a near field enhancement effect.
    Huang J; Zhao X; Huang X; Liang W
    Phys Chem Chem Phys; 2021 Nov; 23(45):25629-25636. PubMed ID: 34757361
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Direct Plasmon-Driven Photoelectrocatalysis.
    Robatjazi H; Bahauddin SM; Doiron C; Thomann I
    Nano Lett; 2015 Sep; 15(9):6155-61. PubMed ID: 26243130
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Critical Coupling of Visible Light Extends Hot-Electron Lifetimes for H
    Willis DE; Taheri MM; Kizilkaya O; Leite TR; Zhang L; Ofoegbuna T; Ding K; Dorman JA; Baxter JB; McPeak KM
    ACS Appl Mater Interfaces; 2020 May; 12(20):22778-22788. PubMed ID: 32338494
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Resonant plasmon enhancement of light emission from CdSe/CdS nanoplatelets on Au nanodisk arrays.
    Milekhin IA; Anikin KV; Rahaman M; Rodyakina EE; Duda TA; Saidzhonov BM; Vasiliev RB; Dzhagan VM; Milekhin AG; Batsanov SA; Gutakovskii AK; Latyshev AV; Zahn DRT
    J Chem Phys; 2020 Oct; 153(16):164708. PubMed ID: 33138402
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Efficient Hot Electron Transfer from Small Au Nanoparticles.
    Liu Y; Chen Q; Cullen DA; Xie Z; Lian T
    Nano Lett; 2020 Jun; 20(6):4322-4329. PubMed ID: 32374614
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Au nanoparticle-decorated silicon pyramids for plasmon-enhanced hot electron near-infrared photodetection.
    Qi Z; Zhai Y; Wen L; Wang Q; Chen Q; Iqbal S; Chen G; Xu J; Tu Y
    Nanotechnology; 2017 May; 28(27):275202. PubMed ID: 28531089
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of anisotropic electron momentum distribution of surface plasmon on internal photoemission of a Schottky hot carrier device.
    Li XH; Chou JB; Kwan WL; Elsharif AM; Kim SG
    Opt Express; 2017 Apr; 25(8):A264-A273. PubMed ID: 28437894
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Plasmonic hot electron transfer in anisotropic Pt-Au nanodisks boosts electrochemical reactions in the visible-NIR region.
    Chen G; Sun M; Li J; Zhu M; Lou Z; Li B
    Nanoscale; 2019 Oct; 11(40):18874-18880. PubMed ID: 31596285
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Coupling of surface plasmon with InGaAs/GaAs quantum well emission by gold nanodisk arrays.
    Gao H; Tung KH; Teng J; Chua SJ; Xiang N
    Appl Opt; 2013 Jun; 52(16):3698-702. PubMed ID: 23736322
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Direct Imaging of Surface Plasmon-Driven Hot Electron Flux on the Au Nanoprism/TiO
    Lee H; Lee H; Park JY
    Nano Lett; 2019 Feb; 19(2):891-896. PubMed ID: 30608712
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Direct observation of ultrafast plasmonic hot electron transfer in the strong coupling regime.
    Shan H; Yu Y; Wang X; Luo Y; Zu S; Du B; Han T; Li B; Li Y; Wu J; Lin F; Shi K; Tay BK; Liu Z; Zhu X; Fang Z
    Light Sci Appl; 2019; 8():9. PubMed ID: 30651984
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.