These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 37083472)

  • 1. On the Stability of Pickering and Classical Nanoemulsions: Theory and Experiments.
    Ding B; Ahmadi SH; Babak P; Bryant SL; Kantzas A
    Langmuir; 2023 May; 39(20):6975-6991. PubMed ID: 37083472
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of Temperature, Oil Type, and Copolymer Concentration on the Long-Term Stability of Oil-in-Water Pickering Nanoemulsions Prepared Using Diblock Copolymer Nanoparticles.
    Hunter SJ; Chohan P; Varlas S; Armes SP
    Langmuir; 2024 Feb; 40(7):3702-14. PubMed ID: 38316052
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Long-Term Stability of n-Alkane-in-Water Pickering Nanoemulsions: Effect of Aqueous Solubility of Droplet Phase on Ostwald Ripening.
    Thompson KL; Derry MJ; Hatton FL; Armes SP
    Langmuir; 2018 Aug; 34(31):9289-9297. PubMed ID: 29999324
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Degradation of kinetically-stable o/w emulsions.
    Capek I
    Adv Colloid Interface Sci; 2004 Mar; 107(2-3):125-55. PubMed ID: 15026289
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanoemulsions stabilized by non-ionic surfactants: stability and degradation mechanisms.
    Koroleva M; Nagovitsina T; Yurtov E
    Phys Chem Chem Phys; 2018 Apr; 20(15):10369-10377. PubMed ID: 29611566
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Formation of stable nanoemulsions by ultrasound-assisted two-step emulsification process for topical drug delivery: Effect of oil phase composition and surfactant concentration and loratadine as ripening inhibitor.
    Sarheed O; Shouqair D; Ramesh KVRNS; Khaleel T; Amin M; Boateng J; Drechsler M
    Int J Pharm; 2020 Feb; 576():118952. PubMed ID: 31843549
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of Salt on the Formation and Stability of Water-in-Oil Pickering Nanoemulsions Stabilized by Diblock Copolymer Nanoparticles.
    Hunter SJ; Cornel EJ; Mykhaylyk OO; Armes SP
    Langmuir; 2020 Dec; 36(51):15523-15535. PubMed ID: 33332972
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characteristics of spontaneously formed nanoemulsions in octane/AOT/brine systems.
    Kini GC; Biswal SL; Wong MS; Miller CA
    J Colloid Interface Sci; 2012 Nov; 385(1):111-21. PubMed ID: 22892335
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Strategies for reducing Ostwald ripening phenomenon in nanoemulsions based on thyme essential oil.
    Trujillo-Cayado LA; Santos J; Calero N; Alfaro-Rodríguez MC; Muñoz J
    J Sci Food Agric; 2020 Mar; 100(4):1671-1677. PubMed ID: 31802496
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sterically Stabilized Diblock Copolymer Nanoparticles Enable Efficient Preparation of Non-Aqueous Pickering Nanoemulsions.
    Hunter SJ; Armes SP
    Langmuir; 2023 May; 39(21):7361-7370. PubMed ID: 37186666
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Long-Term Stability of Pickering Nanoemulsions Prepared Using Diblock Copolymer Nanoparticles: Effect of Nanoparticle Core Crosslinking, Oil Type, and the Role Played by Excess Copolymers.
    Hunter SJ; Armes SP
    Langmuir; 2022 Jul; 38(26):8021-8029. PubMed ID: 35737742
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bespoke Diblock Copolymer Nanoparticles Enable the Production of Relatively Stable Oil-in-Water Pickering Nanoemulsions.
    Thompson KL; Cinotti N; Jones ER; Mable CJ; Fowler PW; Armes SP
    Langmuir; 2017 Nov; 33(44):12616-12623. PubMed ID: 29022716
    [TBL] [Abstract][Full Text] [Related]  

  • 13. How Do Charged End-Groups on the Steric Stabilizer Block Influence the Formation and Long-Term Stability of Pickering Nanoemulsions Prepared Using Sterically Stabilized Diblock Copolymer Nanoparticles?
    Hunter SJ; Penfold NJW; Chan DH; Mykhaylyk OO; Armes SP
    Langmuir; 2020 Jan; 36(3):769-780. PubMed ID: 31899941
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Colloidal properties of sodium caseinate-stabilized nanoemulsions prepared by a combination of a high-energy homogenization and evaporative ripening methods.
    Montes de Oca-Ávalos JM; Candal RJ; Herrera ML
    Food Res Int; 2017 Oct; 100(Pt 1):143-150. PubMed ID: 28873673
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mucoadhesive pickering nanoemulsions via dynamic covalent chemistry.
    Hunter SJ; Abu Elella MH; Johnson EC; Taramova L; Brotherton EE; Armes SP; Khutoryanskiy VV; Smallridge MJ
    J Colloid Interface Sci; 2023 Dec; 651():334-345. PubMed ID: 37544222
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inter-droplet force between magnetically polarizable Pickering oil-in-water nanoemulsions stabilized with γ-Al
    Nandy M; Lahiri BB; Philip J
    J Colloid Interface Sci; 2022 Feb; 607(Pt 2):1671-1686. PubMed ID: 34592554
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inhibiting Ostwald Ripening by Scaffolding Droplets.
    Zhang H; Chen S; Zhang B; Zhang X
    Langmuir; 2020 Nov; 36(45):13682-13688. PubMed ID: 33143409
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Self-Assembled Egg Yolk Peptide Micellar Nanoparticles as a Versatile Emulsifier for Food-Grade Oil-in-Water Pickering Nanoemulsions.
    Du Z; Li Q; Li J; Su E; Liu X; Wan Z; Yang X
    J Agric Food Chem; 2019 Oct; 67(42):11728-11740. PubMed ID: 31525998
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gelatin molecular structures affect behaviors of fish oil-loaded traditional and Pickering emulsions.
    Ding M; Zhang T; Zhang H; Tao N; Wang X; Zhong J
    Food Chem; 2020 Mar; 309():125642. PubMed ID: 31685367
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of zein/soluble soybean polysaccharide nanoparticle-stabilized Pickering emulsions.
    Gao J; Liang H; Li S; Zhou B
    J Food Sci; 2021 May; 86(5):1907-1916. PubMed ID: 33885154
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.