These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Mimicking Biological Synaptic Functionality with an Indium Phosphide Synaptic Device on Silicon for Scalable Neuromorphic Computing. Sarkar D; Tao J; Wang W; Lin Q; Yeung M; Ren C; Kapadia R ACS Nano; 2018 Feb; 12(2):1656-1663. PubMed ID: 29328623 [TBL] [Abstract][Full Text] [Related]
5. Pruning recurrent neural networks replicates adolescent changes in working memory and reinforcement learning. Averbeck BB Proc Natl Acad Sci U S A; 2022 May; 119(22):e2121331119. PubMed ID: 35622896 [TBL] [Abstract][Full Text] [Related]
6. Sleep-Dependent Memory Consolidation in a Neuromorphic Nanowire Network. Li Q; Diaz-Alvarez A; Tang D; Higuchi R; Shingaya Y; Nakayama T ACS Appl Mater Interfaces; 2020 Nov; 12(45):50573-50580. PubMed ID: 33135880 [TBL] [Abstract][Full Text] [Related]
7. Organic core-sheath nanowire artificial synapses with femtojoule energy consumption. Xu W; Min SY; Hwang H; Lee TW Sci Adv; 2016 Jun; 2(6):e1501326. PubMed ID: 27386556 [TBL] [Abstract][Full Text] [Related]
8. Multi-terminal ionic-gated low-power silicon nanowire synaptic transistors with dendritic functions for neuromorphic systems. Li X; Yu B; Wang B; Bao L; Zhang B; Li H; Yu Z; Zhang T; Yang Y; Huang R; Wu Y; Li M Nanoscale; 2020 Aug; 12(30):16348-16358. PubMed ID: 32725043 [TBL] [Abstract][Full Text] [Related]
12. Full imitation of synaptic metaplasticity based on memristor devices. Wu Q; Wang H; Luo Q; Banerjee W; Cao J; Zhang X; Wu F; Liu Q; Li L; Liu M Nanoscale; 2018 Mar; 10(13):5875-5881. PubMed ID: 29508884 [TBL] [Abstract][Full Text] [Related]
13. Simultaneous emulation of synaptic and intrinsic plasticity using a memristive synapse. Sung SH; Kim TJ; Shin H; Im TH; Lee KJ Nat Commun; 2022 May; 13(1):2811. PubMed ID: 35589710 [TBL] [Abstract][Full Text] [Related]
14. [Progress on metaplasticity and its role in learning and memory]. Wang SL; Lu W Sheng Li Xue Bao; 2016 Aug; 68(4):475-82. PubMed ID: 27546507 [TBL] [Abstract][Full Text] [Related]
15. The coexistence of threshold and memory switching characteristics of ALD HfO Abbas H; Abbas Y; Hassan G; Sokolov AS; Jeon YR; Ku B; Kang CJ; Choi C Nanoscale; 2020 Jul; 12(26):14120-14134. PubMed ID: 32597451 [TBL] [Abstract][Full Text] [Related]
16. Emulation of Synaptic Plasticity on a Cobalt-Based Synaptic Transistor for Neuromorphic Computing. Monalisha P; Kumar APS; Wang XR; Piramanayagam SN ACS Appl Mater Interfaces; 2022 Mar; 14(9):11864-11872. PubMed ID: 35229606 [TBL] [Abstract][Full Text] [Related]
17. In materia reservoir computing with a fully memristive architecture based on self-organizing nanowire networks. Milano G; Pedretti G; Montano K; Ricci S; Hashemkhani S; Boarino L; Ielmini D; Ricciardi C Nat Mater; 2022 Feb; 21(2):195-202. PubMed ID: 34608285 [TBL] [Abstract][Full Text] [Related]
18. Synaptic metaplasticity and the local charge effect in postsynaptic densities. Tompa P; Friedrich P Trends Neurosci; 1998 Mar; 21(3):97-102. PubMed ID: 9530914 [TBL] [Abstract][Full Text] [Related]
19. Artificial Neuron and Synapse Devices Based on 2D Materials. Lee G; Baek JH; Ren F; Pearton SJ; Lee GH; Kim J Small; 2021 May; 17(20):e2100640. PubMed ID: 33817985 [TBL] [Abstract][Full Text] [Related]
20. Self-limited single nanowire systems combining all-in-one memristive and neuromorphic functionalities. Milano G; Luebben M; Ma Z; Dunin-Borkowski R; Boarino L; Pirri CF; Waser R; Ricciardi C; Valov I Nat Commun; 2018 Dec; 9(1):5151. PubMed ID: 30514894 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]