These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 37083596)

  • 21. Hybrid Assistive Limb Functional Treatment for a Patient with Chronic Incomplete Cervical Spinal Cord Injury.
    Soma Y; Kubota S; Kadone H; Shimizu Y; Takahashi H; Hada Y; Koda M; Sankai Y; Yamazaki M
    Int Med Case Rep J; 2021; 14():413-420. PubMed ID: 34188556
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Initial Outcomes from a Multicenter Study Utilizing the Indego Powered Exoskeleton in Spinal Cord Injury.
    Tefertiller C; Hays K; Jones J; Jayaraman A; Hartigan C; Bushnik T; Forrest GF
    Top Spinal Cord Inj Rehabil; 2018; 24(1):78-85. PubMed ID: 29434463
    [No Abstract]   [Full Text] [Related]  

  • 23. The effect of impedance-controlled robotic gait training on walking ability and quality in individuals with chronic incomplete spinal cord injury: an explorative study.
    Fleerkotte BM; Koopman B; Buurke JH; van Asseldonk EH; van der Kooij H; Rietman JS
    J Neuroeng Rehabil; 2014 Mar; 11():26. PubMed ID: 24594284
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effects of Wearable Powered Exoskeletal Training on Functional Mobility, Physiological Health and Quality of Life in Non-ambulatory Spinal Cord Injury Patients.
    Kim HS; Park JH; Lee HS; Lee JY; Jung JW; Park SB; Hyun DJ; Park S; Yoon J; Lim H; Choi YY; Kim MJ
    J Korean Med Sci; 2021 Mar; 36(12):e80. PubMed ID: 33783145
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Safety and efficacy of at-home robotic locomotion therapy in individuals with chronic incomplete spinal cord injury: a prospective, pre-post intervention, proof-of-concept study.
    Rupp R; Schließmann D; Plewa H; Schuld C; Gerner HJ; Weidner N; Hofer EP; Knestel M
    PLoS One; 2015; 10(3):e0119167. PubMed ID: 25803577
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Results of the first interim analysis of the RAPPER II trial in patients with spinal cord injury: ambulation and functional exercise programs in the REX powered walking aid.
    Birch N; Graham J; Priestley T; Heywood C; Sakel M; Gall A; Nunn A; Signal N
    J Neuroeng Rehabil; 2017 Jun; 14(1):60. PubMed ID: 28629390
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Multicentric investigation on the safety, feasibility and usability of the ABLE lower-limb robotic exoskeleton for individuals with spinal cord injury: a framework towards the standardisation of clinical evaluations.
    Wright MA; Herzog F; Mas-Vinyals A; Carnicero-Carmona A; Lobo-Prat J; Hensel C; Franz S; Weidner N; Vidal J; Opisso E; Rupp R
    J Neuroeng Rehabil; 2023 Apr; 20(1):45. PubMed ID: 37046307
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Hybrid assistive limb (HAL) treatment for patients with severe thoracic myelopathy due to ossification of the posterior longitudinal ligament (OPLL) in the postoperative acute/subacute phase: A clinical trial.
    Kubota S; Abe T; Kadone H; Shimizu Y; Funayama T; Watanabe H; Marushima A; Koda M; Hada Y; Sankai Y; Yamazaki M
    J Spinal Cord Med; 2019 Jul; 42(4):517-525. PubMed ID: 30335588
    [No Abstract]   [Full Text] [Related]  

  • 29. The Safety and Feasibility of Exoskeletal-Assisted Walking in Acute Rehabilitation After Spinal Cord Injury.
    McIntosh K; Charbonneau R; Bensaada Y; Bhatiya U; Ho C
    Arch Phys Med Rehabil; 2020 Jan; 101(1):113-120. PubMed ID: 31568761
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A Consecutive 25-Week Program of Gait Training, Using the Alternating Hybrid Assistive Limb (HAL
    Kanazawa A; Yoshikawa K; Koseki K; Takeuchi R; Mutsuzaki H
    Medicina (Kaunas); 2019 Nov; 55(11):. PubMed ID: 31752225
    [No Abstract]   [Full Text] [Related]  

  • 31. Assistive powered exoskeleton for complete spinal cord injury: correlations between walking ability and exoskeleton control.
    Guanziroli E; Cazzaniga M; Colombo L; Basilico S; Legnani G; Molteni F
    Eur J Phys Rehabil Med; 2019 Apr; 55(2):209-216. PubMed ID: 30156088
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mobility Outcomes Following Five Training Sessions with a Powered Exoskeleton.
    Hartigan C; Kandilakis C; Dalley S; Clausen M; Wilson E; Morrison S; Etheridge S; Farris R
    Top Spinal Cord Inj Rehabil; 2015; 21(2):93-9. PubMed ID: 26364278
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Walking improvement in chronic incomplete spinal cord injury with exoskeleton robotic training (WISE): a randomized controlled trial.
    Edwards DJ; Forrest G; Cortes M; Weightman MM; Sadowsky C; Chang SH; Furman K; Bialek A; Prokup S; Carlow J; VanHiel L; Kemp L; Musick D; Campo M; Jayaraman A
    Spinal Cord; 2022 Jun; 60(6):522-532. PubMed ID: 35094007
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Decrease of spasticity after hybrid assistive limb
    Ikumi A; Kubota S; Shimizu Y; Kadone H; Marushima A; Ueno T; Kawamoto H; Hada Y; Matsumura A; Sankai Y; Yamazaki M
    J Spinal Cord Med; 2017 Sep; 40(5):573-578. PubMed ID: 27762171
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Does treadmill training with Hybrid Assistive Limb (HAL) impact the quality of life? A first case series in the United States.
    Yilmaz E; Schmidt CK; Mayadev A; Tawfik T; Kobota K; Cambier Z; Norvell DD; Chapman J
    Disabil Rehabil Assist Technol; 2019 Jul; 14(5):521-525. PubMed ID: 30044680
    [No Abstract]   [Full Text] [Related]  

  • 36. Feasibility and efficacy of high-speed gait training with a voluntary driven exoskeleton robot for gait and balance dysfunction in patients with chronic stroke: nonrandomized pilot study with concurrent control.
    Yoshimoto T; Shimizu I; Hiroi Y; Kawaki M; Sato D; Nagasawa M
    Int J Rehabil Res; 2015 Dec; 38(4):338-43. PubMed ID: 26288120
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Exoskeletal-Assisted Walking During Acute Inpatient Rehabilitation Leads to Motor and Functional Improvement in Persons With Spinal Cord Injury: A Pilot Study.
    Tsai CY; Delgado AD; Weinrauch WJ; Manente N; Levy I; Escalon MX; Bryce TN; Spungen AM
    Arch Phys Med Rehabil; 2020 Apr; 101(4):607-612. PubMed ID: 31891715
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Exoskeleton-based training improves walking independence in incomplete spinal cord injury patients: results from a randomized controlled trial.
    Gil-Agudo Á; Megía-García Á; Pons JL; Sinovas-Alonso I; Comino-Suárez N; Lozano-Berrio V; Del-Ama AJ
    J Neuroeng Rehabil; 2023 Mar; 20(1):36. PubMed ID: 36964574
    [TBL] [Abstract][Full Text] [Related]  

  • 39. An integrated gait rehabilitation training based on Functional Electrical Stimulation cycling and overground robotic exoskeleton in complete spinal cord injury patients: Preliminary results.
    Mazzoleni S; Battini E; Rustici A; Stampacchia G
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():289-293. PubMed ID: 28813833
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Development of VariLeg, an exoskeleton with variable stiffness actuation: first results and user evaluation from the CYBATHLON 2016.
    Schrade SO; Dätwyler K; Stücheli M; Studer K; Türk DA; Meboldt M; Gassert R; Lambercy O
    J Neuroeng Rehabil; 2018 Mar; 15(1):18. PubMed ID: 29534730
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.