These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

87 related articles for article (PubMed ID: 3708366)

  • 1. Classical conditioning rapidly induces specific changes in frequency receptive fields of single neurons in secondary and ventral ectosylvian auditory cortical fields.
    Diamond DM; Weinberger NM
    Brain Res; 1986 May; 372(2):357-60. PubMed ID: 3708366
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Physiological plasticity of single neurons in auditory cortex of the cat during acquisition of the pupillary conditioned response: II. Secondary field (AII).
    Diamond DM; Weinberger NM
    Behav Neurosci; 1984 Apr; 98(2):189-210. PubMed ID: 6721922
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of context in the expression of learning-induced plasticity of single neurons in auditory cortex.
    Diamond DM; Weinberger NM
    Behav Neurosci; 1989 Jun; 103(3):471-94. PubMed ID: 2736064
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Classical conditioning induces CS-specific receptive field plasticity in the auditory cortex of the guinea pig.
    Bakin JS; Weinberger NM
    Brain Res; 1990 Dec; 536(1-2):271-86. PubMed ID: 2085753
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Physiological memory in primary auditory cortex: characteristics and mechanisms.
    Weinberger NM
    Neurobiol Learn Mem; 1998; 70(1-2):226-51. PubMed ID: 9753599
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rapid development of learning-induced receptive field plasticity in the auditory cortex.
    Edeline JM; Pham P; Weinberger NM
    Behav Neurosci; 1993 Aug; 107(4):539-51. PubMed ID: 8397859
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Physiological plasticity of single neurons in auditory cortex of the cat during acquisition of the pupillary conditioned response: I. Primary field (AI).
    Weinberger NM; Hopkins W; Diamond DM
    Behav Neurosci; 1984 Apr; 98(2):171-88. PubMed ID: 6721921
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Daily variation and appetitive conditioning-induced plasticity of auditory cortex receptive fields.
    Kisley MA; Gerstein GL
    Eur J Neurosci; 2001 May; 13(10):1993-2003. PubMed ID: 11403693
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thalamic short-term plasticity in the auditory system: associative returning of receptive fields in the ventral medial geniculate body.
    Edeline JM; Weinberger NM
    Behav Neurosci; 1991 Oct; 105(5):618-39. PubMed ID: 1815615
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Habituation produces frequency-specific plasticity of receptive fields in the auditory cortex.
    Condon CD; Weinberger NM
    Behav Neurosci; 1991 Jun; 105(3):416-30. PubMed ID: 1863363
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Induction of receptive field plasticity in the auditory cortex of the guinea pig during instrumental avoidance conditioning.
    Bakin JS; South DA; Weinberger NM
    Behav Neurosci; 1996 Oct; 110(5):905-13. PubMed ID: 8918994
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Learning-induced changes of auditory receptive fields.
    Weinberger NM
    Curr Opin Neurobiol; 1993 Aug; 3(4):570-7. PubMed ID: 8219724
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Learning-induced physiological memory in adult primary auditory cortex: receptive fields plasticity, model, and mechanisms.
    Weinberger NM; Bakin JS
    Audiol Neurootol; 1998; 3(2-3):145-67. PubMed ID: 9575382
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Induction of long-term receptive field plasticity in the auditory cortex of the waking guinea pig by stimulation of the nucleus basalis.
    Bjordahl TS; Dimyan MA; Weinberger NM
    Behav Neurosci; 1998 Jun; 112(3):467-79. PubMed ID: 9676965
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Plasticity of human auditory-evoked fields induced by shock conditioning and contingency reversal.
    Kluge C; Bauer M; Leff AP; Heinze HJ; Dolan RJ; Driver J
    Proc Natl Acad Sci U S A; 2011 Jul; 108(30):12545-50. PubMed ID: 21746922
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Characteristics of the neuronal responses of the auditory zone of the cortex of awake cats in the resting state and during an elaborated defensive conditioned reflex].
    Dumenko VN; Sachenko VV
    Neirofiziologiia; 1979; 11(1):25-34. PubMed ID: 424021
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differential frequency conditioning enhances spectral contrast sensitivity of units in auditory cortex (field Al) of the alert Mongolian gerbil.
    Ohl FW; Scheich H
    Eur J Neurosci; 1996 May; 8(5):1001-17. PubMed ID: 8743748
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Heterogeneous associative plasticity in the auditory cortex induced by fear learning - novel insight into the classical conditioning paradigm.
    Zelenka O; Novak O; Brunova A; Syka J
    Physiol Res; 2021 Jul; 70(3):447-460. PubMed ID: 33982575
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Long-term retention of learning-induced receptive-field plasticity in the auditory cortex.
    Weinberger NM; Javid R; Lepan B
    Proc Natl Acad Sci U S A; 1993 Mar; 90(6):2394-8. PubMed ID: 8460150
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of inter-field communication on neuronal response synchrony across auditory cortex.
    Carrasco A; Lomber SG
    Hear Res; 2013 Oct; 304():57-69. PubMed ID: 23791776
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.