These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

82 related articles for article (PubMed ID: 3708374)

  • 1. Characterization of glucocorticoid receptors in whole and cellular subfractions of embryonic chick spinal cord.
    Weill CL
    Brain Res; 1986 Jun; 392(1-2):167-73. PubMed ID: 3708374
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of androgen receptors in embryonic chick spinal cord.
    Weill CL
    Brain Res; 1986 Jan; 389(1-2):127-32. PubMed ID: 3948003
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Properties and distribution of glucocorticoid-binding sites in cytosol of the spinal cord.
    Orti E; Coirini H; De Nicola AF
    Neuroendocrinology; 1985 Mar; 40(3):225-31. PubMed ID: 3990910
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of [3H]rauwolscine binding to alpha 2-adrenoceptor sites in the lumbar spinal cord of the cat: comparison to such binding sites in the cat frontal cerebral cortex.
    Howe JR; Yaksh TL
    Brain Res; 1986 Mar; 368(1):87-100. PubMed ID: 2869820
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Glucocorticoid and mineralocorticoid receptors in rat neocortical and hippocampal brain cells in culture: characterization and regulatory studies.
    Vedder H; Weiss I; Holsboer F; Reul JM
    Brain Res; 1993 Mar; 605(1):18-24. PubMed ID: 8467386
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Demonstration of glucocorticoid receptors in the adrenal cortex: evidence for a direct dexamethasone suppressive effect on the rat adrenal gland.
    Loose DS; Do YS; Chen TL; Feldman D
    Endocrinology; 1980 Jul; 107(1):137-46. PubMed ID: 6247134
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exogenously administered alpha-bungarotoxin binds to embryonic chick spinal cord: implications for the toxin-induced arrest of naturally occurring motoneuron death.
    Renshaw G; Rigby P; Self G; Lamb A; Goldie R
    Neuroscience; 1993 Apr; 53(4):1163-72. PubMed ID: 8506023
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantitative analysis of multiple kappa-opioid receptors by selective and nonselective ligand binding in guinea pig spinal cord: resolution of high and low affinity states of the kappa 2 receptors by a computerized model-fitting technique.
    Tiberi M; Magnan J
    Mol Pharmacol; 1990 May; 37(5):694-703. PubMed ID: 2160061
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rat anterior pituitary. Distinction of an approximately 8S, corticosterone-preferring species from dexamethasone-binding glucocorticoid receptors.
    Krozowski ZS; Funder JW
    J Clin Invest; 1982 Oct; 70(4):899-905. PubMed ID: 7119118
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adrenocorticoid action in the spinal cord: some unique molecular properties of glucocorticoid receptors.
    De Nicola AF; Moses DF; González S; Ortí E
    Cell Mol Neurobiol; 1989 Jun; 9(2):179-92. PubMed ID: 2663168
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Specific binding sites for [3H]Dexamethasone in the hypothalamus of juvenile rainbow trout, Oncorhynchus mykiss.
    Allison CM; Omeljaniuk RJ
    Gen Comp Endocrinol; 1998 Apr; 110(1):2-10. PubMed ID: 9514842
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regulation of the androgen and glucocorticoid receptors in rat and mouse skeletal muscle cytosol.
    Dahlberg E; Snochowski M; Gustafsson JA
    Endocrinology; 1981 Apr; 108(4):1431-40. PubMed ID: 6970661
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Glucocorticoid receptor-mediated teratogenesis in the chick embryo.
    Jelínek R; Pavlík A; Peterka M
    Teratog Carcinog Mutagen; 1983; 3(1):1-7. PubMed ID: 6188228
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification and partial characterization of glucocorticoid receptors in human liver.
    Bojar H; Westerkamp S; Staib W; Broelsch C
    Hepatogastroenterology; 1980 Jun; 27(3):176-82. PubMed ID: 7461593
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Heterogeneity and properties of transformation of corticosteroid receptors in spinal cord and hippocampus.
    Moses DF; González S; Ortí E; De Nicola AF
    Brain Res; 1989 Mar; 481(2):317-24. PubMed ID: 2720384
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Binding sites for glucocorticoids in cytosols from the ventral prostate and seminal vesicle of rats.
    Noguchi T; Izawa M; Ichii S
    Endocrinol Jpn; 1983 Aug; 30(4):513-21. PubMed ID: 6671455
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Glucocorticoid type II receptors of the spinal cord show lower affinity than hippocampal type II receptors: binding parameters obtained with different experimental protocols.
    Moses DF; González S; McEwen BS; De Nicola AF
    J Steroid Biochem Mol Biol; 1991 Jul; 39(1):5-12. PubMed ID: 2069865
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of 5-hydroxytryptamine1B receptors in rat spinal cord via [125I]iodocyanopindolol binding and inhibition of [3H]-5-hydroxytryptamine release.
    Matsumoto I; Combs MR; Jones DJ
    J Pharmacol Exp Ther; 1992 Feb; 260(2):614-26. PubMed ID: 1738111
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [3H]cortivazol: a unique high affinity ligand for the glucocorticoid receptor.
    Schlechte JA; Simons SS; Lewis DA; Thompson EB
    Endocrinology; 1985 Oct; 117(4):1355-62. PubMed ID: 4029081
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of glucocorticoid receptor in HeLa-S3 cells.
    Hoschützky H; Pongs O
    Biochemistry; 1985 Dec; 24(25):7348-56. PubMed ID: 4084585
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.