These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 3708377)

  • 21. Serotonergic influence on olfactory learning in the neonate rat.
    McLean JH; Darby-King A; Sullivan RM; King SR
    Behav Neural Biol; 1993 Sep; 60(2):152-62. PubMed ID: 7906939
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Ontogenesis of the functional activity of rat olfactory bulb: autoradiographic study with the 2-deoxyglucose method.
    Astic L; Saucier D
    Brain Res; 1981 Sep; 254(2):243-56. PubMed ID: 7272779
    [TBL] [Abstract][Full Text] [Related]  

  • 23. pCREB in the neonate rat olfactory bulb is selectively and transiently increased by odor preference-conditioned training.
    McLean JH; Harley CW; Darby-King A; Yuan Q
    Learn Mem; 1999; 6(6):608-18. PubMed ID: 10641765
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The size of mitral cells is altered when rats are exposed to an odor from their day of birth.
    Panhuber H; Laing DG
    Brain Res; 1987 Jul; 431(1):133-40. PubMed ID: 3620982
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Development switch in neural circuitry underlying odor-malaise learning.
    Shionoya K; Moriceau S; Lunday L; Miner C; Roth TL; Sullivan RM
    Learn Mem; 2006; 13(6):801-8. PubMed ID: 17101877
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Focal 2-DG uptake persists following olfactory bulb lesions.
    Guthrie KM; Holmes J; Leon M
    Brain Res Bull; 1995; 38(2):129-34. PubMed ID: 7583337
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Sensitive period for neural and behavioral response development to learned odors.
    Woo CC; Leon M
    Brain Res; 1987 Dec; 433(2):309-13. PubMed ID: 3690342
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The role of olfactory bulb norepinephrine in early olfactory learning.
    Sullivan RM; Zyzak DR; Skierkowski P; Wilson DA
    Brain Res Dev Brain Res; 1992 Dec; 70(2):279-82. PubMed ID: 1477962
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Neural correlates of memory for odor detection conditioning in adult rats.
    Hamrick WD; Wilson DA; Sullivan RM
    Neurosci Lett; 1993 Nov; 163(1):36-40. PubMed ID: 8295728
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A learned odor evokes an enhanced Fos-like glomerular response in the olfactory bulb of young rats.
    Johnson BA; Woo CC; Duong H; Nguyen V; Leon M
    Brain Res; 1995 Nov; 699(2):192-200. PubMed ID: 8616621
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Anatomic mapping of neuronal odor responses in the developing rat olfactory bulb.
    Guthrie KM; Gall C
    J Comp Neurol; 2003 Jan; 455(1):56-71. PubMed ID: 12454996
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The effect of intranasal zinc sulfate treatment on odor-mediated behavior and on odor-induced metabolic activity in the olfactory bulbs of neonatal rats.
    Stewart WB; Greer CA; Teicher MH
    Brain Res; 1983 Jun; 284(2-3):247-59. PubMed ID: 6871726
    [TBL] [Abstract][Full Text] [Related]  

  • 33. 5-HT2 receptor involvement in conditioned olfactory learning in the neonate rat pup.
    McLean JH; Darby-King A; Hodge E
    Behav Neurosci; 1996 Dec; 110(6):1426-34. PubMed ID: 8986343
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Maturation of pyramidal cells in anterior piriform cortex may be sufficient to explain the end of early olfactory learning in rats.
    Oruro EM; Pardo GVE; Lucion AB; Calcagnotto ME; Idiart MAP
    Learn Mem; 2020 Jan; 27(1):20-32. PubMed ID: 31843979
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Infusion of the metabotropic receptor agonist, DCG-IV, into the main olfactory bulb induces olfactory preference learning in rat pups.
    Rumsey JD; Darby-King A; Harley CW; McLean JH
    Brain Res Dev Brain Res; 2001 Jun; 128(2):177-9. PubMed ID: 11412903
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Spine density on olfactory granule cell dendrites is reduced in rats reared in a restricted olfactory environment.
    Rehn B; Panhuber H; Laing DG; Breipohl W
    Brain Res; 1988 May; 468(1):143-7. PubMed ID: 2454148
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Regional autonomy in the peripheral processing of odor signals in newborn rabbits.
    Hudson R; Distel H
    Brain Res; 1987 Sep; 421(1-2):85-94. PubMed ID: 3690288
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Elaboration of glial cell processes in the rat olfactory bulb associated with early learning.
    Matsutani S; Leon M
    Brain Res; 1993 Jun; 613(2):317-20. PubMed ID: 8186984
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Spatial Mapping in the Rat Olfactory Bulb by Odor and Direct Electrical Stimulation.
    Coelho DH; Costanzo RM
    Otolaryngol Head Neck Surg; 2016 Sep; 155(3):526-32. PubMed ID: 27165674
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Increase in a focal population of juxtaglomerular cells in the olfactory bulb associated with early learning.
    Woo CC; Leon M
    J Comp Neurol; 1991 Mar; 305(1):49-56. PubMed ID: 2033124
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.