These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 37084258)

  • 1. DFHiC: a dilated full convolution model to enhance the resolution of Hi-C data.
    Wang B; Liu K; Li Y; Wang J
    Bioinformatics; 2023 May; 39(5):. PubMed ID: 37084258
    [TBL] [Abstract][Full Text] [Related]  

  • 2. HiCARN: resolution enhancement of Hi-C data using cascading residual networks.
    Hicks P; Oluwadare O
    Bioinformatics; 2022 Apr; 38(9):2414-2421. PubMed ID: 35274679
    [TBL] [Abstract][Full Text] [Related]  

  • 3. hicGAN infers super resolution Hi-C data with generative adversarial networks.
    Liu Q; Lv H; Jiang R
    Bioinformatics; 2019 Jul; 35(14):i99-i107. PubMed ID: 31510693
    [TBL] [Abstract][Full Text] [Related]  

  • 4. EnHiC: learning fine-resolution Hi-C contact maps using a generative adversarial framework.
    Hu Y; Ma W
    Bioinformatics; 2021 Jul; 37(Suppl_1):i272-i279. PubMed ID: 34252966
    [TBL] [Abstract][Full Text] [Related]  

  • 5. HiCNN: a very deep convolutional neural network to better enhance the resolution of Hi-C data.
    Liu T; Wang Z
    Bioinformatics; 2019 Nov; 35(21):4222-4228. PubMed ID: 31056636
    [TBL] [Abstract][Full Text] [Related]  

  • 6. ReHiC: Enhancing Hi-C data resolution via residual convolutional network.
    Cheng Z; Liu L; Lin G; Yi C; Chu X; Liang Y; Zhou W; Jin X
    J Bioinform Comput Biol; 2021 Apr; 19(2):2150001. PubMed ID: 33685371
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reference panel-guided super-resolution inference of Hi-C data.
    Zhang Y; Blanchette M
    Bioinformatics; 2023 Jun; 39(39 Suppl 1):i386-i393. PubMed ID: 37387127
    [TBL] [Abstract][Full Text] [Related]  

  • 8. HiCNN2: Enhancing the Resolution of Hi-C Data Using an Ensemble of Convolutional Neural Networks.
    Liu T; Wang Z
    Genes (Basel); 2019 Oct; 10(11):. PubMed ID: 31671634
    [TBL] [Abstract][Full Text] [Related]  

  • 9. preciseTAD: a transfer learning framework for 3D domain boundary prediction at base-pair resolution.
    Stilianoudakis SC; Marshall MA; Dozmorov MG
    Bioinformatics; 2022 Jan; 38(3):621-630. PubMed ID: 34741515
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Single-cell Hi-C data enhancement with deep residual and generative adversarial networks.
    Wang Y; Guo Z; Cheng J
    Bioinformatics; 2023 Aug; 39(8):. PubMed ID: 37498561
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A global high-density chromatin interaction network reveals functional long-range and trans-chromosomal relationships.
    Lohia R; Fox N; Gillis J
    Genome Biol; 2022 Nov; 23(1):238. PubMed ID: 36352464
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of copy number variations and translocations in cancer cells from Hi-C data.
    Chakraborty A; Ay F
    Bioinformatics; 2018 Jan; 34(2):338-345. PubMed ID: 29048467
    [TBL] [Abstract][Full Text] [Related]  

  • 13. FAN-C: a feature-rich framework for the analysis and visualisation of chromosome conformation capture data.
    Kruse K; Hug CB; Vaquerizas JM
    Genome Biol; 2020 Dec; 21(1):303. PubMed ID: 33334380
    [TBL] [Abstract][Full Text] [Related]  

  • 14. ParticleChromo3D: a Particle Swarm Optimization algorithm for chromosome 3D structure prediction from Hi-C data.
    Vadnais D; Middleton M; Oluwadare O
    BioData Min; 2022 Sep; 15(1):19. PubMed ID: 36131326
    [TBL] [Abstract][Full Text] [Related]  

  • 15. ClusterTAD: an unsupervised machine learning approach to detecting topologically associated domains of chromosomes from Hi-C data.
    Oluwadare O; Cheng J
    BMC Bioinformatics; 2017 Nov; 18(1):480. PubMed ID: 29137603
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pentad: a tool for distance-dependent analysis of Hi-C interactions within and between chromatin compartments.
    Magnitov MD; Garaev AK; Tyakht AV; Ulianov SV; Razin SV
    BMC Bioinformatics; 2022 Apr; 23(1):116. PubMed ID: 35366792
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhancing Hi-C data resolution with deep convolutional neural network HiCPlus.
    Zhang Y; An L; Xu J; Zhang B; Zheng WJ; Hu M; Tang J; Yue F
    Nat Commun; 2018 Feb; 9(1):750. PubMed ID: 29467363
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An integrative approach for fine-mapping chromatin interactions.
    Jaroszewicz A; Ernst J
    Bioinformatics; 2020 Mar; 36(6):1704-1711. PubMed ID: 31742318
    [TBL] [Abstract][Full Text] [Related]  

  • 19. DeCOOC Deconvoluted Hi-C Map Characterizes the Chromatin Architecture of Cells in Physiologically Distinctive Tissues.
    Wang J; Lu L; Zheng S; Wang D; Jin L; Zhang Q; Li M; Zhang Z
    Adv Sci (Weinh); 2023 Sep; 10(27):e2301058. PubMed ID: 37515382
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification and utilization of copy number information for correcting Hi-C contact map of cancer cell lines.
    Khalil AIS; Muzaki SRBM; Chattopadhyay A; Sanyal A
    BMC Bioinformatics; 2020 Nov; 21(1):506. PubMed ID: 33160308
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.