These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 37084259)

  • 1. AcrNET: predicting anti-CRISPR with deep learning.
    Li Y; Wei Y; Xu S; Tan Q; Zong L; Wang J; Wang Y; Chen J; Hong L; Li Y
    Bioinformatics; 2023 May; 39(5):. PubMed ID: 37084259
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Off-target predictions in CRISPR-Cas9 gene editing using deep learning.
    Lin J; Wong KC
    Bioinformatics; 2018 Sep; 34(17):i656-i663. PubMed ID: 30423072
    [TBL] [Abstract][Full Text] [Related]  

  • 3. ifDEEPre: large protein language-based deep learning enables interpretable and fast predictions of enzyme commission numbers.
    Tan Q; Xiao J; Chen J; Wang Y; Zhang Z; Zhao T; Li Y
    Brief Bioinform; 2024 May; 25(4):. PubMed ID: 38942594
    [TBL] [Abstract][Full Text] [Related]  

  • 4. CRISPR-DIPOFF: an interpretable deep learning approach for CRISPR Cas-9 off-target prediction.
    Toufikuzzaman M; Hassan Samee MA; Sohel Rahman M
    Brief Bioinform; 2024 Jan; 25(2):. PubMed ID: 38388680
    [TBL] [Abstract][Full Text] [Related]  

  • 5. ACRnet: Adaptive Cross-transfer Residual neural network for chest X-ray images discrimination of the cardiothoracic diseases.
    Wang B; Zhang W
    Math Biosci Eng; 2022 May; 19(7):6841-6859. PubMed ID: 35730285
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phage-Encoded Anti-CRISPR Defenses.
    Stanley SY; Maxwell KL
    Annu Rev Genet; 2018 Nov; 52():445-464. PubMed ID: 30208287
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genome mining for anti-CRISPR operons using machine learning.
    Yang B; Khatri M; Zheng J; Deogun J; Yin Y
    Bioinformatics; 2023 May; 39(5):. PubMed ID: 37158576
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Predicting CRISPR/Cas9 Repair Outcomes by Attention-Based Deep Learning Framework.
    Liu X; Wang S; Ai D
    Cells; 2022 Jun; 11(11):. PubMed ID: 35681543
    [TBL] [Abstract][Full Text] [Related]  

  • 9. PaCRISPR: a server for predicting and visualizing anti-CRISPR proteins.
    Wang J; Dai W; Li J; Xie R; Dunstan RA; Stubenrauch C; Zhang Y; Lithgow T
    Nucleic Acids Res; 2020 Jul; 48(W1):W348-W357. PubMed ID: 32459325
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pre-training graph neural networks for link prediction in biomedical networks.
    Long Y; Wu M; Liu Y; Fang Y; Kwoh CK; Chen J; Luo J; Li X
    Bioinformatics; 2022 Apr; 38(8):2254-2262. PubMed ID: 35171981
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CRISPR-Cas9 Based Bacteriophage Genome Editing.
    Zhang X; Zhang C; Liang C; Li B; Meng F; Ai Y
    Microbiol Spectr; 2022 Aug; 10(4):e0082022. PubMed ID: 35880867
    [TBL] [Abstract][Full Text] [Related]  

  • 12. TransPhos: A Deep-Learning Model for General Phosphorylation Site Prediction Based on Transformer-Encoder Architecture.
    Wang X; Zhang Z; Zhang C; Meng X; Shi X; Qu P
    Int J Mol Sci; 2022 Apr; 23(8):. PubMed ID: 35457080
    [TBL] [Abstract][Full Text] [Related]  

  • 13. DeepHomo2.0: improved protein-protein contact prediction of homodimers by transformer-enhanced deep learning.
    Lin P; Yan Y; Huang SY
    Brief Bioinform; 2023 Jan; 24(1):. PubMed ID: 36440949
    [TBL] [Abstract][Full Text] [Related]  

  • 14. AcrPred: A hybrid optimization with enumerated machine learning algorithm to predict Anti-CRISPR proteins.
    Dao FY; Liu ML; Su W; Lv H; Zhang ZY; Lin H; Liu L
    Int J Biol Macromol; 2023 Feb; 228():706-714. PubMed ID: 36584777
    [TBL] [Abstract][Full Text] [Related]  

  • 15. DeepFusion: A deep learning based multi-scale feature fusion method for predicting drug-target interactions.
    Song T; Zhang X; Ding M; Rodriguez-Paton A; Wang S; Wang G
    Methods; 2022 Aug; 204():269-277. PubMed ID: 35219861
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Potent Cas9 Inhibition in Bacterial and Human Cells by AcrIIC4 and AcrIIC5 Anti-CRISPR Proteins.
    Lee J; Mir A; Edraki A; Garcia B; Amrani N; Lou HE; Gainetdinov I; Pawluk A; Ibraheim R; Gao XD; Liu P; Davidson AR; Maxwell KL; Sontheimer EJ
    mBio; 2018 Dec; 9(6):. PubMed ID: 30514786
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Predicting protein-peptide binding residues via interpretable deep learning.
    Wang R; Jin J; Zou Q; Nakai K; Wei L
    Bioinformatics; 2022 Jun; 38(13):3351-3360. PubMed ID: 35604077
    [TBL] [Abstract][Full Text] [Related]  

  • 18. RT-Transformer: retention time prediction for metabolite annotation to assist in metabolite identification.
    Xue J; Wang B; Ji H; Li W
    Bioinformatics; 2024 Mar; 40(3):. PubMed ID: 38402516
    [TBL] [Abstract][Full Text] [Related]  

  • 19. PreAcrs: a machine learning framework for identifying anti-CRISPR proteins.
    Zhu L; Wang X; Li F; Song J
    BMC Bioinformatics; 2022 Oct; 23(1):444. PubMed ID: 36284264
    [TBL] [Abstract][Full Text] [Related]  

  • 20. PhaVIP: Phage VIrion Protein classification based on chaos game representation and Vision Transformer.
    Shang J; Peng C; Tang X; Sun Y
    Bioinformatics; 2023 Jun; 39(39 Suppl 1):i30-i39. PubMed ID: 37387136
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.