BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 37084262)

  • 1. A functional analysis of omic network embedding spaces reveals key altered functions in cancer.
    Doria-Belenguer S; Xenos A; Ceddia G; Malod-Dognin N; Pržulj N
    Bioinformatics; 2023 May; 39(5):. PubMed ID: 37084262
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Linear functional organization of the omic embedding space.
    Xenos A; Malod-Dognin N; Milinković S; Pržulj N
    Bioinformatics; 2021 Nov; 37(21):3839-3847. PubMed ID: 34213534
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The axes of biology: a novel axes-based network embedding paradigm to decipher the functional mechanisms of the cell.
    Doria-Belenguer S; Xenos A; Ceddia G; Malod-Dognin N; Pržulj N
    Bioinform Adv; 2024; 4(1):vbae075. PubMed ID: 38827411
    [TBL] [Abstract][Full Text] [Related]  

  • 4. DeepMF: deciphering the latent patterns in omics profiles with a deep learning method.
    Chen L; Xu J; Li SC
    BMC Bioinformatics; 2019 Dec; 20(Suppl 23):648. PubMed ID: 31881818
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identifying cellular cancer mechanisms through pathway-driven data integration.
    Windels SFL; Malod-Dognin N; Pržulj N
    Bioinformatics; 2022 Sep; 38(18):4344-4351. PubMed ID: 35916710
    [TBL] [Abstract][Full Text] [Related]  

  • 6. iSOM-GSN: an integrative approach for transforming multi-omic data into gene similarity networks via self-organizing maps.
    Fatima N; Rueda L
    Bioinformatics; 2020 Aug; 36(15):4248-4254. PubMed ID: 32407457
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Factorized embeddings learns rich and biologically meaningful embedding spaces using factorized tensor decomposition.
    Trofimov A; Cohen JP; Bengio Y; Perreault C; Lemieux S
    Bioinformatics; 2020 Jul; 36(Suppl_1):i417-i426. PubMed ID: 32657403
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modeling gene-wise dependencies improves the identification of drug response biomarkers in cancer studies.
    Nikolova O; Moser R; Kemp C; Gönen M; Margolin AA
    Bioinformatics; 2017 May; 33(9):1362-1369. PubMed ID: 28082455
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Supervised Graph Clustering for Cancer Subtyping Based on Survival Analysis and Integration of Multi-Omic Tumor Data.
    Liu C; Cao W; Wu S; Shen W; Jiang D; Yu Z; Wong HS
    IEEE/ACM Trans Comput Biol Bioinform; 2022; 19(2):1193-1202. PubMed ID: 32750893
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Leveraging heterogeneous network embedding for metabolic pathway prediction.
    M A Basher AR; Hallam SJ
    Bioinformatics; 2021 May; 37(6):822-829. PubMed ID: 33305310
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A non-negative matrix factorization method for detecting modules in heterogeneous omics multi-modal data.
    Yang Z; Michailidis G
    Bioinformatics; 2016 Jan; 32(1):1-8. PubMed ID: 26377073
    [TBL] [Abstract][Full Text] [Related]  

  • 12. NEMO: cancer subtyping by integration of partial multi-omic data.
    Rappoport N; Shamir R
    Bioinformatics; 2019 Sep; 35(18):3348-3356. PubMed ID: 30698637
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mining hidden knowledge: embedding models of cause-effect relationships curated from the biomedical literature.
    Krämer A; Green J; Billaud JN; Pasare NA; Jones M; Tugendreich S
    Bioinform Adv; 2022; 2(1):vbac022. PubMed ID: 36699407
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cooperative driver pathways discovery by multiplex network embedding.
    Wang J; Chen X; Wu Z; Guo M; Yu G
    Brief Bioinform; 2023 May; 24(3):. PubMed ID: 37000166
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Efficient algorithms to discover alterations with complementary functional association in cancer.
    Sarto Basso R; Hochbaum DS; Vandin F
    PLoS Comput Biol; 2019 May; 15(5):e1006802. PubMed ID: 31120875
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Multi-project and Multi-profile joint Non-negative Matrix Factorization for cancer omic datasets.
    Salazar DA; Pržulj N; Valencia CF
    Bioinformatics; 2021 Dec; 37(24):4801-4809. PubMed ID: 34375392
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-quality gene/disease embedding in a multi-relational heterogeneous graph after a joint matrix/tensor decomposition.
    Zhou K; Zhang S; Wang Y; Cohen KB; Kim JD; Luo Q; Yao X; Zhou X; Xia J
    J Biomed Inform; 2022 Feb; 126():103973. PubMed ID: 34995810
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cancer subtype identification by consensus guided graph autoencoders.
    Liang C; Shang M; Luo J
    Bioinformatics; 2021 Dec; 37(24):4779-4786. PubMed ID: 34289034
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Consensus embedding: theory, algorithms and application to segmentation and classification of biomedical data.
    Viswanath S; Madabhushi A
    BMC Bioinformatics; 2012 Feb; 13():26. PubMed ID: 22316103
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inference of patient-specific pathway activities from multi-dimensional cancer genomics data using PARADIGM.
    Vaske CJ; Benz SC; Sanborn JZ; Earl D; Szeto C; Zhu J; Haussler D; Stuart JM
    Bioinformatics; 2010 Jun; 26(12):i237-45. PubMed ID: 20529912
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.