These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 37084262)

  • 21. Network embedding framework for driver gene discovery by combining functional and structural information.
    Chu X; Guan B; Dai L; Liu JX; Li F; Shang J
    BMC Genomics; 2023 Jul; 24(1):426. PubMed ID: 37516822
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Exploring chromatin conformation and gene co-expression through graph embedding.
    Varrone M; Nanni L; Ciriello G; Ceri S
    Bioinformatics; 2020 Dec; 36(Suppl_2):i700-i708. PubMed ID: 33381846
    [TBL] [Abstract][Full Text] [Related]  

  • 23. NESM: a network embedding method for tumor stratification by integrating multi-omics data.
    Li F; Sun Z; Liu JX; Shang J; Dai L; Liu X; Li Y
    G3 (Bethesda); 2022 Nov; 12(11):. PubMed ID: 36124952
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Network regularised Cox regression and multiplex network models to predict disease comorbidities and survival of cancer.
    Xu H; Moni MA; Liò P
    Comput Biol Chem; 2015 Dec; 59 Pt B():15-31. PubMed ID: 26611766
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A cross-level information transmission network for hierarchical omics data integration and phenotype prediction from a new genotype.
    He D; Xie L
    Bioinformatics; 2021 Dec; 38(1):204-210. PubMed ID: 34390577
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Text mining-based word representations for biomedical data analysis and protein-protein interaction networks in machine learning tasks.
    Alachram H; Chereda H; Beißbarth T; Wingender E; Stegmaier P
    PLoS One; 2021; 16(10):e0258623. PubMed ID: 34653224
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Multiview Incomplete Knowledge Graph Integration with application to cross-institutional EHR data harmonization.
    Zhou D; Gan Z; Shi X; Patwari A; Rush E; Bonzel CL; Panickan VA; Hong C; Ho YL; Cai T; Costa L; Li X; Castro VM; Murphy SN; Brat G; Weber G; Avillach P; Gaziano JM; Cho K; Liao KP; Lu J; Cai T
    J Biomed Inform; 2022 Sep; 133():104147. PubMed ID: 35872266
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Minimum curvilinearity to enhance topological prediction of protein interactions by network embedding.
    Cannistraci CV; Alanis-Lobato G; Ravasi T
    Bioinformatics; 2013 Jul; 29(13):i199-209. PubMed ID: 23812985
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Predicting multicellular function through multi-layer tissue networks.
    Zitnik M; Leskovec J
    Bioinformatics; 2017 Jul; 33(14):i190-i198. PubMed ID: 28881986
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Integrate multi-omics data with biological interaction networks using Multi-view Factorization AutoEncoder (MAE).
    Ma T; Zhang A
    BMC Genomics; 2019 Dec; 20(Suppl 11):944. PubMed ID: 31856727
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Bayesian semi-nonnegative matrix tri-factorization to identify pathways associated with cancer phenotypes.
    Park S; Kar N; Cheong JH; Hwang TH
    Pac Symp Biocomput; 2020; 25():427-438. PubMed ID: 31797616
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Unsupervised construction of computational graphs for gene expression data with explicit structural inductive biases.
    Scherer P; Trębacz M; Simidjievski N; Viñas R; Shams Z; Terre HA; Jamnik M; Liò P
    Bioinformatics; 2022 Feb; 38(5):1320-1327. PubMed ID: 34888618
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [Application of improved locally linear embedding algorithm in dimensionality reduction of cancer gene expression data].
    Liu W; Wang C; Wang B; Wang C
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2014 Feb; 31(1):85-90. PubMed ID: 24804490
    [TBL] [Abstract][Full Text] [Related]  

  • 34. UINMF performs mosaic integration of single-cell multi-omic datasets using nonnegative matrix factorization.
    Kriebel AR; Welch JD
    Nat Commun; 2022 Feb; 13(1):780. PubMed ID: 35140223
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Detection of protein complexes from multiple protein interaction networks using graph embedding.
    Liu X; Yang Z; Sang S; Lin H; Wang J; Xu B
    Artif Intell Med; 2019 May; 96():107-115. PubMed ID: 31164203
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Molecular data representation based on gene embeddings for cancer drug response prediction.
    Park S; Lee H
    Sci Rep; 2023 Dec; 13(1):21898. PubMed ID: 38081928
    [TBL] [Abstract][Full Text] [Related]  

  • 37. GLIDE: combining local methods and diffusion state embeddings to predict missing interactions in biological networks.
    Devkota K; Murphy JM; Cowen LJ
    Bioinformatics; 2020 Jul; 36(Suppl_1):i464-i473. PubMed ID: 32657369
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Network-Based Interpretation of Diverse High-Throughput Datasets through the Omics Integrator Software Package.
    Tuncbag N; Gosline SJ; Kedaigle A; Soltis AR; Gitter A; Fraenkel E
    PLoS Comput Biol; 2016 Apr; 12(4):e1004879. PubMed ID: 27096930
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Random walk with restart on multiplex and heterogeneous biological networks.
    Valdeolivas A; Tichit L; Navarro C; Perrin S; Odelin G; Levy N; Cau P; Remy E; Baudot A
    Bioinformatics; 2019 Feb; 35(3):497-505. PubMed ID: 30020411
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Clinical drug response prediction from preclinical cancer cell lines by logistic matrix factorization approach.
    Emdadi A; Eslahchi C
    J Bioinform Comput Biol; 2022 Apr; 20(2):2150035. PubMed ID: 34923927
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.