These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
258 related articles for article (PubMed ID: 37084271)
21. Improved pathogenicity prediction for rare human missense variants. Wu Y; Li R; Sun S; Weile J; Roth FP Am J Hum Genet; 2021 Oct; 108(10):1891-1906. PubMed ID: 34551312 [TBL] [Abstract][Full Text] [Related]
22. In Silico Predictions of KCNQ Variant Pathogenicity in Epilepsy. Ritter DM; Horn PS; Holland KD Pediatr Neurol; 2021 May; 118():48-54. PubMed ID: 33784504 [TBL] [Abstract][Full Text] [Related]
23. Cross-protein transfer learning substantially improves disease variant prediction. Jagota M; Ye C; Albors C; Rastogi R; Koehl A; Ioannidis N; Song YS Genome Biol; 2023 Aug; 24(1):182. PubMed ID: 37550700 [TBL] [Abstract][Full Text] [Related]
24. Genome-wide prediction of disease variant effects with a deep protein language model. Brandes N; Goldman G; Wang CH; Ye CJ; Ntranos V Nat Genet; 2023 Sep; 55(9):1512-1522. PubMed ID: 37563329 [TBL] [Abstract][Full Text] [Related]
25. Using computational approaches to enhance the interpretation of missense variants in the PAX6 gene. Andhika NS; Biswas S; Hardcastle C; Green DJ; Ramsden SC; Birney E; Black GC; Sergouniotis PI Eur J Hum Genet; 2024 Aug; 32(8):1005-1013. PubMed ID: 38849599 [TBL] [Abstract][Full Text] [Related]
26. Assessment of 13 in silico pathogenicity methods on cancer-related variants. Yazar M; Ozbek P Comput Biol Med; 2022 Jun; 145():105434. PubMed ID: 35364305 [TBL] [Abstract][Full Text] [Related]
27. Genetic variant classification by predicted protein structure: A case study on IRF6. Murali H; Wang P; Liao EC; Wang K Comput Struct Biotechnol J; 2024 Dec; 23():892-904. PubMed ID: 38370976 [TBL] [Abstract][Full Text] [Related]
28. Gene-specific machine learning for pathogenicity prediction of rare BRCA1 and BRCA2 missense variants. Kang M; Kim S; Lee DB; Hong C; Hwang KB Sci Rep; 2023 Jun; 13(1):10478. PubMed ID: 37380723 [TBL] [Abstract][Full Text] [Related]
29. Evaluating the Performance of In silico Tools for PRRT2 Missense Variants. Sun H; Song W; Li B Comb Chem High Throughput Screen; 2024 Jun; ():. PubMed ID: 38910474 [TBL] [Abstract][Full Text] [Related]
30. Differential Domain Distribution of gnomAD- and Disease-Linked Connexin Missense Variants. Bai D; Wang J; Li T; Chan R; Atalla M; Chen RC; Khazaneh MT; An RJ; Stathopulos PB Int J Mol Sci; 2021 Jul; 22(15):. PubMed ID: 34360596 [TBL] [Abstract][Full Text] [Related]
31. Assessing variants of uncertain significance implicated in hearing loss using a comprehensive deafness proteome. Tollefson MR; Gogal RA; Weaver AM; Schaefer AM; Marini RJ; Azaiez H; Kolbe DL; Wang D; Weaver AE; Casavant TL; Braun TA; Smith RJH; Schnieders MJ Hum Genet; 2023 Jun; 142(6):819-834. PubMed ID: 37086329 [TBL] [Abstract][Full Text] [Related]
32. Enhancing Missense Variant Pathogenicity Prediction with MissenseNet: Integrating Structural Insights and ShuffleNet-Based Deep Learning Techniques. Liu J; Chen Y; Huang K; Guan X Biomolecules; 2024 Sep; 14(9):. PubMed ID: 39334871 [TBL] [Abstract][Full Text] [Related]
33. Comparison and optimization of in silico algorithms for predicting the pathogenicity of sodium channel variants in epilepsy. Holland KD; Bouley TM; Horn PS Epilepsia; 2017 Jul; 58(7):1190-1198. PubMed ID: 28518218 [TBL] [Abstract][Full Text] [Related]
34. Comprehensive characterization of amino acid positions in protein structures reveals molecular effect of missense variants. Iqbal S; Pérez-Palma E; Jespersen JB; May P; Hoksza D; Heyne HO; Ahmed SS; Rifat ZT; Rahman MS; Lage K; Palotie A; Cottrell JR; Wagner FF; Daly MJ; Campbell AJ; Lal D Proc Natl Acad Sci U S A; 2020 Nov; 117(45):28201-28211. PubMed ID: 33106425 [TBL] [Abstract][Full Text] [Related]
35. Development and validation of a computational method for assessment of missense variants in hypertrophic cardiomyopathy. Jordan DM; Kiezun A; Baxter SM; Agarwala V; Green RC; Murray MF; Pugh T; Lebo MS; Rehm HL; Funke BH; Sunyaev SR Am J Hum Genet; 2011 Feb; 88(2):183-92. PubMed ID: 21310275 [TBL] [Abstract][Full Text] [Related]
37. Using AI-predicted protein structures as a reference to predict loss-of-function activity in tumor suppressor breast cancer genes. Gnanaolivu R; Hart SN Comput Struct Biotechnol J; 2024 Dec; 23():3472-3480. PubMed ID: 39430403 [TBL] [Abstract][Full Text] [Related]
38. MoDAFold: a strategy for predicting the structure of missense mutant protein based on AlphaFold2 and molecular dynamics. Zheng L; Shi S; Sun X; Lu M; Liao Y; Zhu S; Zhang H; Pan Z; Fang P; Zeng Z; Li H; Li Z; Xue W; Zhu F Brief Bioinform; 2024 Jan; 25(2):. PubMed ID: 38305456 [TBL] [Abstract][Full Text] [Related]
39. Constraint and conservation of paired-type homeodomains predicts the clinical outcome of missense variants of uncertain significance. Thai MHN; Gardner A; Redpath L; Mattiske T; Dearsley O; Shaw M; Vulto-van Silfhout AT; Pfundt R; Dixon J; McGaughran J; Pérez-Jurado LA; Gécz J; Shoubridge C Hum Mutat; 2020 Aug; 41(8):1407-1424. PubMed ID: 32383243 [TBL] [Abstract][Full Text] [Related]
40. Performance of in silico prediction tools for the classification of rare BRCA1/2 missense variants in clinical diagnostics. Ernst C; Hahnen E; Engel C; Nothnagel M; Weber J; Schmutzler RK; Hauke J BMC Med Genomics; 2018 Mar; 11(1):35. PubMed ID: 29580235 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]