These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 3708442)

  • 21. Human spinal cord neurons in dissociated monolayer cultures: morphological, biochemical, and electrophysiological properties.
    Kato AC; Touzeau G; Bertrand D; Bader CR
    J Neurosci; 1985 Oct; 5(10):2750-61. PubMed ID: 2413186
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Development of cholinergic retinal neurons from embryonic chicken in monolayer cultures: stimulation by glial cell-derived factors.
    Hofmann HD
    J Neurosci; 1988 Apr; 8(4):1361-9. PubMed ID: 3357021
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Choline acetyltransferase activity of spinal cord cell cultures increased by co-culture with muscle and by muscle-conditioned medium.
    Giller EL; Neale JH; Bullock PN; Schrier BK; Nelson PG
    J Cell Biol; 1977 Jul; 74(1):16-29. PubMed ID: 874000
    [TBL] [Abstract][Full Text] [Related]  

  • 24. GABAergic and cholinergic basal forebrain and preoptic-anterior hypothalamic projections to the mediodorsal nucleus of the thalamus in the cat.
    Gritti I; Mariotti M; Mancia M
    Neuroscience; 1998 Jul; 85(1):149-78. PubMed ID: 9607710
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Cholinergic properties of embryonic chick sensory neurons.
    Bhave SV; Wakade AR
    Neurosci Lett; 1988 Sep; 91(3):333-8. PubMed ID: 3185971
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Ontogeny of enkephalin- and VIP-containing neurons in dissociated cultures of embryonic mouse spinal cord and dorsal root ganglia.
    Eiden LE; Siegel RE; Giraud P; Brenneman DE
    Brain Res Dev Brain Res; 1988 Nov; 44(1):141-50. PubMed ID: 3069239
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Nerve growth factor increases choline acetyltransferase but not survival or fiber outgrowth of cultured fetal septal cholinergic neurons.
    Hefti F; Hartikka J; Eckenstein F; Gnahn H; Heumann R; Schwab M
    Neuroscience; 1985 Jan; 14(1):55-68. PubMed ID: 3974885
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Differential effects of insulin on choline acetyltransferase and glutamic acid decarboxylase activities in neuron-rich striatal cultures.
    Brass BJ; Nonner D; Barrett JN
    J Neurochem; 1992 Aug; 59(2):415-24. PubMed ID: 1629717
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Regulation of cholinergic expression in cultured spinal cord neurons.
    Lombard-Golly D; Wong V; Kessler JA
    Dev Biol; 1990 Jun; 139(2):396-406. PubMed ID: 2338174
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Regulation of choline acetyltransferase in primary cell cultures of spinal cord by neurotransmitter L-norepinephrine.
    Ishida I; Deguchi T
    Brain Res; 1983 Mar; 283(1):13-23. PubMed ID: 6299476
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [3H]-tetrodotoxin binding in neuronal and non-neuronal spinal cord cultures.
    Litzinger MJ; Lombet A; Brenneman DE; Lazdunski M
    Biochem Biophys Res Commun; 1986 Aug; 138(3):1250-6. PubMed ID: 2428363
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The effects of nerve growth factor on the development of septal cholinergic neurons in reaggregate cell cultures.
    Hsiang J; Heller A; Hoffmann PC; Mobley WC; Wainer BH
    Neuroscience; 1989; 29(1):209-23. PubMed ID: 2710345
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Embryonic development of four different subsets of cholinergic neurons in rat cervical spinal cord.
    Phelps PE; Barber RP; Brennan LA; Maines VM; Salvaterra PM; Vaughn JE
    J Comp Neurol; 1990 Jan; 291(1):9-26. PubMed ID: 2298930
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Ionic determinants of excitability in cultured mouse dorsal root ganglion and spinal cord cells.
    Ransom BR; Holz RW
    Brain Res; 1977 Nov; 136(3):445-53. PubMed ID: 922495
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Inhibition by transforming growth factor beta of choline acetyltransferase stimulation in a co-culture of spinal cord and muscle cells from mice.
    Kawata A; Nakane M; Deguchi T
    Brain Res Dev Brain Res; 1990 Dec; 57(1):129-37. PubMed ID: 2090366
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Enrichment of spinal cord cell cultures with motoneurons.
    Berg DK; Fischbach GD
    J Cell Biol; 1978 Apr; 77(1):83-98. PubMed ID: 566275
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Endogenous and exogenous factors support neuronal survival and choline acetyltransferase activity in embryonic spinal cord cultures.
    Manthorpe M; Luyten W; Longo FM; Varon S
    Brain Res; 1983 May; 267(1):57-66. PubMed ID: 6860950
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Antiserum to activity-dependent neurotrophic factor produces neuronal cell death in CNS cultures: immunological and biological specificity.
    Gozes I; Davidson A; Gozes Y; Mascolo R; Barth R; Warren D; Hauser J; Brenneman DE
    Brain Res Dev Brain Res; 1997 Apr; 99(2):167-75. PubMed ID: 9125470
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Development of cholinergic pedunculopontine neurons in vitro: comparison with cholinergic septal cells and response to nerve growth factor, ciliary neuronotrophic factor, and retinoic acid.
    Knusel B; Hefti F
    J Neurosci Res; 1988; 21(2-4):365-75. PubMed ID: 3216429
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Differential modulation of the cholinergic activity of rat CNS neurons in culture.
    Hayes V; Cadelli D; Kato AC
    Brain Res Dev Brain Res; 1991 Oct; 62(2):159-68. PubMed ID: 1769096
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.