BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 37084490)

  • 1. Mechanical strength predictability of full factorial, Taguchi, and Box Behnken designs: Optimization of thermal settings and Cellulose Nanofibers content in PA12 for MEX AM.
    Vidakis N; Petousis M; Mountakis N; Papadakis V; Moutsopoulou A
    J Mech Behav Biomed Mater; 2023 Jun; 142():105846. PubMed ID: 37084490
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nanocomposites with Optimized Polytetrafluoroethylene Content as a Reinforcement Agent in PA12 and PLA for Material Extrusion Additive Manufacturing.
    Vidakis N; Petousis M; Moutsopoulou A; Papadakis V; Spiridaki M; Mountakis N; Charou C; Tsikritzis D; Maravelakis E
    Polymers (Basel); 2023 Jun; 15(13):. PubMed ID: 37447432
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-performance medical-grade resin radically reinforced with cellulose nanofibers for 3D printing.
    Vidakis N; Petousis M; Michailidis N; Kechagias JD; Mountakis N; Argyros A; Boura O; Grammatikos S
    J Mech Behav Biomed Mater; 2022 Oct; 134():105408. PubMed ID: 35981423
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High Performance PA 6/Cellulose Nanocomposites in the Interest of Industrial Scale Melt Processing.
    Sridhara PK; Vilaseca F
    Polymers (Basel); 2021 May; 13(9):. PubMed ID: 34066567
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Box-Behnken modeling to quantify the impact of control parameters on the energy and tensile efficiency of PEEK in MEX 3D-printing.
    Vidakis N; Petousis M; Mountakis N; Karapidakis E
    Heliyon; 2023 Jul; 9(7):e18363. PubMed ID: 37539218
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Effect of Nano Zirconium Dioxide (ZrO
    Petousis M; Moutsopoulou A; Korlos A; Papadakis V; Mountakis N; Tsikritzis D; Ntintakis I; Vidakis N
    Nanomaterials (Basel); 2023 Jun; 13(13):. PubMed ID: 37446421
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Preparation and characterization of thermoplastic starch and cellulose nanofibers as green nanocomposites: Extrusion processing.
    Ghanbari A; Tabarsa T; Ashori A; Shakeri A; Mashkour M
    Int J Biol Macromol; 2018 Jun; 112():442-447. PubMed ID: 29410268
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design and optimization methodology for different 3D processed materials (PLA, ABS and carbon fiber reinforced nylon PA12) subjected to static and dynamic loads.
    Rodríguez-Reyna SL; Díaz-Aguilera JH; Acevedo-Parra HR; García CJ; Gutierrez-Castañeda EJ; Tapia F
    J Mech Behav Biomed Mater; 2024 Feb; 150():106257. PubMed ID: 38048715
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure Optimization of Cellulose Nanofibers/Poly(Lactic Acid) Composites by the Sizing of AKD.
    Li L; Cao M; Li J; Wang C; Li S
    Polymers (Basel); 2021 Nov; 13(23):. PubMed ID: 34883622
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cellulose Nanofibrils Filled Poly(Lactic Acid) Biocomposite Filament for FDM 3D Printing.
    Wang Q; Ji C; Sun L; Sun J; Liu J
    Molecules; 2020 May; 25(10):. PubMed ID: 32429191
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis and characterization of cellulose nanofibers (CNF) ramie reinforced cassava starch hybrid composites.
    Syafri E; Kasim A; Abral H; Sudirman ; Sulungbudi GT; Sanjay MR; Sari NH
    Int J Biol Macromol; 2018 Dec; 120(Pt A):578-586. PubMed ID: 30165147
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Strong Polyamide-6 Nanocomposites with Cellulose Nanofibers Mediated by Green Solvent Mixtures.
    Sridhara PK; Masso F; Olsén P; Vilaseca F
    Nanomaterials (Basel); 2021 Aug; 11(8):. PubMed ID: 34443955
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Three-Dimensional Printed Polyamide 12 (PA12) and Polylactic Acid (PLA) Alumina (Al
    Petousis M; Vidakis N; Mountakis N; Papadakis V; Tzounis L
    Nanomaterials (Basel); 2022 Dec; 12(23):. PubMed ID: 36500915
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Strong and electrically conductive nanopaper from cellulose nanofibers and polypyrrole.
    Lay M; Méndez JA; Delgado-Aguilar M; Bun KN; Vilaseca F
    Carbohydr Polym; 2016 Nov; 152():361-369. PubMed ID: 27516283
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of PVA and silica on chemical, thermo-mechanical and electrical properties of Celluclast-treated nanofibrillated cellulose composites.
    Poyraz B; Tozluoğlu A; Candan Z; Demir A; Yavuz M
    Int J Biol Macromol; 2017 Nov; 104(Pt A):384-392. PubMed ID: 28602986
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermal and dynamic mechanical properties of cellulose nanofibers reinforced epoxy composites.
    Saba N; Safwan A; Sanyang ML; Mohammad F; Pervaiz M; Jawaid M; Alothman OY; Sain M
    Int J Biol Macromol; 2017 Sep; 102():822-828. PubMed ID: 28455253
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biodegradable nano composite reinforced with cellulose nano fiber from coconut industry waste for replacing synthetic plastic food packaging.
    Arun R; Shruthy R; Preetha R; Sreejit V
    Chemosphere; 2022 Mar; 291(Pt 1):132786. PubMed ID: 34762882
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functionality Versus Sustainability for PLA in MEX 3D Printing: The Impact of Generic Process Control Factors on Flexural Response and Energy Efficiency.
    Petousis M; Vidakis N; Mountakis N; Karapidakis E; Moutsopoulou A
    Polymers (Basel); 2023 Feb; 15(5):. PubMed ID: 36904469
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Preparation and characterization of starch-based composite films reinforced by cellulose nanofibers.
    Fazeli M; Keley M; Biazar E
    Int J Biol Macromol; 2018 Sep; 116():272-280. PubMed ID: 29729338
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reinforcement Effects from Nanodiamond in Cellulose Nanofibril Films.
    Morimune-Moriya S; Salajkova M; Zhou Q; Nishino T; Berglund LA
    Biomacromolecules; 2018 Jul; 19(7):2423-2431. PubMed ID: 29620880
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.