These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 37085011)

  • 1. Activating the dorsomedial and ventral midbrain projections to the striatum differentially impairs goal-directed action in male mice.
    Conn KA; Zou S; Das J; Alexander S; Burne THJ; Kesby JP
    Neuropharmacology; 2023 Aug; 234():109550. PubMed ID: 37085011
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Antagonism of D2 receptors via raclopride ameliorates amphetamine-induced associative learning deficits in male mice.
    Conn KA; Alexander S; Burne THJ; Kesby JP
    Behav Brain Res; 2023 Oct; 454():114649. PubMed ID: 37643667
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thalamic Control of Dorsomedial Striatum Regulates Internal State to Guide Goal-Directed Action Selection.
    Bradfield LA; Balleine BW
    J Neurosci; 2017 Mar; 37(13):3721-3733. PubMed ID: 28242795
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dopamine Axons in Dorsal Striatum Encode Contralateral Visual Stimuli and Choices.
    Moss MM; Zatka-Haas P; Harris KD; Carandini M; Lak A
    J Neurosci; 2021 Aug; 41(34):7197-7205. PubMed ID: 34253628
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of striatal dopamine projections across striatal subregions in behavioral flexibility.
    van der Merwe RK; Nadel JA; Copes-Finke D; Pawelko S; Scott JS; Ghanem M; Fox M; Morehouse C; McLaughlin R; Maddox C; Albert-Lyons R; Malaki G; Groce V; Turocy A; Aggadi N; Jin X; Howard CD
    Eur J Neurosci; 2023 Dec; 58(12):4466-4486. PubMed ID: 36617434
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prefrontal Corticostriatal Disconnection Blocks the Acquisition of Goal-Directed Action.
    Hart G; Bradfield LA; Balleine BW
    J Neurosci; 2018 Jan; 38(5):1311-1322. PubMed ID: 29301872
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Bilateral Prefronto-striatal Pathway Is Necessary for Learning New Goal-Directed Actions.
    Hart G; Bradfield LA; Fok SY; Chieng B; Balleine BW
    Curr Biol; 2018 Jul; 28(14):2218-2229.e7. PubMed ID: 30056856
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Involvement of basal ganglia and orbitofrontal cortex in goal-directed behavior.
    Hollerman JR; Tremblay L; Schultz W
    Prog Brain Res; 2000; 126():193-215. PubMed ID: 11105648
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reward and choice encoding in terminals of midbrain dopamine neurons depends on striatal target.
    Parker NF; Cameron CM; Taliaferro JP; Lee J; Choi JY; Davidson TJ; Daw ND; Witten IB
    Nat Neurosci; 2016 Jun; 19(6):845-54. PubMed ID: 27110917
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Striatal direct and indirect pathway neurons differentially control the encoding and updating of goal-directed learning.
    Peak J; Chieng B; Hart G; Balleine BW
    Elife; 2020 Nov; 9():. PubMed ID: 33215609
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Striatal dopamine release tracks the relationship between actions and their consequences.
    Hart G; Burton TJ; Nolan CR; Balleine BW
    Cell Rep; 2024 Mar; 43(3):113828. PubMed ID: 38386550
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Restricting dopaminergic signaling to either dorsolateral or medial striatum facilitates cognition.
    Darvas M; Palmiter RD
    J Neurosci; 2010 Jan; 30(3):1158-65. PubMed ID: 20089924
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The acquisition of goal-directed actions generates opposing plasticity in direct and indirect pathways in dorsomedial striatum.
    Shan Q; Ge M; Christie MJ; Balleine BW
    J Neurosci; 2014 Jul; 34(28):9196-201. PubMed ID: 25009253
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dorsal and ventral streams: the distinct role of striatal subregions in the acquisition and performance of goal-directed actions.
    Hart G; Leung BK; Balleine BW
    Neurobiol Learn Mem; 2014 Feb; 108():104-18. PubMed ID: 24231424
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Decreasing Striatopallidal Pathway Function Enhances Motivation by Energizing the Initiation of Goal-Directed Action.
    Carvalho Poyraz F; Holzner E; Bailey MR; Meszaros J; Kenney L; Kheirbek MA; Balsam PD; Kellendonk C
    J Neurosci; 2016 Jun; 36(22):5988-6001. PubMed ID: 27251620
    [TBL] [Abstract][Full Text] [Related]  

  • 16. What Role Does Striatal Dopamine Play in Goal-directed Action?
    Hart G; Burton TJ; Balleine BW
    Neuroscience; 2024 May; 546():20-32. PubMed ID: 38521480
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neural circuit mechanism for learning dependent on dopamine transmission: roles of striatal direct and indirect pathways in sensory discrimination.
    Kobayashi K; Fukabori R; Nishizawa K
    Adv Pharmacol; 2013; 68():143-53. PubMed ID: 24054143
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Striatal low-threshold spiking interneurons locally gate dopamine.
    Holly EN; Davatolhagh MF; EspaƱa RA; Fuccillo MV
    Curr Biol; 2021 Sep; 31(18):4139-4147.e6. PubMed ID: 34302742
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Amygdala-Cortical Control of Striatal Plasticity Drives the Acquisition of Goal-Directed Action.
    Fisher SD; Ferguson LA; Bertran-Gonzalez J; Balleine BW
    Curr Biol; 2020 Nov; 30(22):4541-4546.e5. PubMed ID: 33007245
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modeling functions of striatal dopamine modulation in learning and planning.
    Suri RE; Bargas J; Arbib MA
    Neuroscience; 2001; 103(1):65-85. PubMed ID: 11311788
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.