BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 37085834)

  • 1. Biosynthesis, characterization and optimization of TiO
    Metwally RA; El Nady J; Ebrahim S; El Sikaily A; El-Sersy NA; Sabry SA; Ghozlan HA
    Microb Cell Fact; 2023 Apr; 22(1):78. PubMed ID: 37085834
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Natural dye extract of lawsonia inermis seed as photo sensitizer for titanium dioxide based dye sensitized solar cells.
    Ananth S; Vivek P; Arumanayagam T; Murugakoothan P
    Spectrochim Acta A Mol Biomol Spectrosc; 2014 Jul; 128():420-6. PubMed ID: 24682058
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nano-TiO2 for dye-sensitized solar cells.
    Baraton MI
    Recent Pat Nanotechnol; 2012 Jan; 6(1):10-5. PubMed ID: 22023080
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improvement of the photoelectric dye sensitized solar cell performance using Fe/S-TiO
    Hsu CY; Al-Salman HNK; Mahmoud ZH; Ahmed RM; Dawood AF
    Sci Rep; 2024 Feb; 14(1):4931. PubMed ID: 38418464
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Eosin-Y sensitized core-shell TiO
    Manikandan VS; Palai AK; Mohanty S; Nayak SK
    J Photochem Photobiol B; 2018 Jun; 183():397-404. PubMed ID: 29778020
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Performance of Caesalpinia sappan heartwood extract as photo sensitizer for dye sensitized solar cells.
    Ananth S; Vivek P; Saravana Kumar G; Murugakoothan P
    Spectrochim Acta A Mol Biomol Spectrosc; 2015 Feb; 137():345-50. PubMed ID: 25233024
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhanced conversion efficiency in dye-sensitized solar cells based on bilayered nano-composite photoanode film consisting of TiO2 nanoparticles and nanofibers.
    Du PF; Song LX; Xiong J
    J Nanosci Nanotechnol; 2014 Jun; 14(6):4164-9. PubMed ID: 24738365
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Review on fabrication methodologies and its impacts on performance of dye-sensitized solar cells.
    Richhariya G; Meikap BC; Kumar A
    Environ Sci Pollut Res Int; 2022 Mar; 29(11):15233-15251. PubMed ID: 34978676
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Facile synthesis of gold and platinum doped titanium oxide nanoparticles for antibacterial and photocatalytic activity: A photodynamic approach.
    Mahboob S; Nivetha R; Gopinath K; Balalakshmi C; Al-Ghanim KA; Al-Misned F; Ahmed Z; Govindarajan M
    Photodiagnosis Photodyn Ther; 2021 Mar; 33():102148. PubMed ID: 33346056
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of microwave plasma sintering for the fabrication of dye sensitized solar cell (DSSC) electrodes.
    Dembele A; Rahman M; MacElroy JM; Dowling DP
    J Nanosci Nanotechnol; 2012 Jun; 12(6):4769-74. PubMed ID: 22905529
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functionalization of nanomaterials by non-thermal large area atmospheric pressure plasmas: application to flexible dye-sensitized solar cells.
    Jung H; Park J; Yoo ES; Han GS; Jung HS; Ko MJ; Park S; Choe W
    Nanoscale; 2013 Sep; 5(17):7825-30. PubMed ID: 23831925
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of calcination treatment on the morphology, crystallinity, and photoelectric properties of all-solid-state dye-sensitized solar cells assembled by TiO2 nanorod arrays.
    Sun X; Sun Q; Li Y; Sui L; Dong L
    Phys Chem Chem Phys; 2013 Nov; 15(42):18716-20. PubMed ID: 24071636
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of incorporation of TiO2 nanoparticles into oriented TiO2 nanotube based dye-sensitized solar cells.
    Shin K; Jun Y; Han GY; Park JH
    J Nanosci Nanotechnol; 2009 Dec; 9(12):7436-9. PubMed ID: 19908804
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fabrication and characterization of photoelectrode thin films with different morphologies of TiO2 nanoparticles for dye-sensitized solar cells.
    Kao MJ; Chang H; Kuo CG; Huang KD; Chen YL
    J Nanosci Nanotechnol; 2011 Aug; 11(8):7459-62. PubMed ID: 22103219
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design of multi-porous layer for dye-sensitized solar cells by doping with TiO2 nanoparticles.
    Hsieh TL; Chu AK; Huang WY
    J Nanosci Nanotechnol; 2013 Jan; 13(1):365-9. PubMed ID: 23646739
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Preparation of anatase/rutile mixed-phase titania nanoparticles for dye-sensitized solar cells.
    Hwang YK; Park SS; Lim JH; Won YS; Huh S
    J Nanosci Nanotechnol; 2013 Mar; 13(3):2255-61. PubMed ID: 23755675
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced Efficiency of Dye Sensitized Solar Cell Using Eu Doped TiO
    Tomar L; Bhatt P; Desai R; Chakrabarty B
    Recent Pat Nanotechnol; 2022; 16(4):333-338. PubMed ID: 34126917
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The influence of shell thickness of Au@TiO2 core-shell nanoparticles on the plasmonic enhancement effect in dye-sensitized solar cells.
    Liu WL; Lin FC; Yang YC; Huang CH; Gwo S; Huang MH; Huang JS
    Nanoscale; 2013 Sep; 5(17):7953-62. PubMed ID: 23860734
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biological construction of single-walled carbon nanotube electron transfer pathways in dye-sensitized solar cells.
    Inoue I; Watanabe K; Yamauchi H; Ishikawa Y; Yasueda H; Uraoka Y; Yamashita I
    ChemSusChem; 2014 Oct; 7(10):2805-10. PubMed ID: 25111295
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stability and efficiency of dye-sensitized solar cells based on papaya-leaf dye.
    Suyitno S; Saputra TJ; Supriyanto A; Arifin Z
    Spectrochim Acta A Mol Biomol Spectrosc; 2015 Sep; 148():99-104. PubMed ID: 25875031
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.