BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 37085898)

  • 1. CasKAS: direct profiling of genome-wide dCas9 and Cas9 specificity using ssDNA mapping.
    Marinov GK; Kim SH; Bagdatli ST; Higashino SI; Trevino AE; Tycko J; Wu T; Bintu L; Bassik MC; He C; Kundaje A; Greenleaf WJ
    Genome Biol; 2023 Apr; 24(1):85. PubMed ID: 37085898
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CRISPR/Cas9-based epigenome editing: An overview of dCas9-based tools with special emphasis on off-target activity.
    Tadić V; Josipović G; Zoldoš V; Vojta A
    Methods; 2019 Jul; 164-165():109-119. PubMed ID: 31071448
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CRISPR-based epigenome editing: mechanisms and applications.
    Fadul SM; Arshad A; Mehmood R
    Epigenomics; 2023 Nov; 15(21):1137-1155. PubMed ID: 37990877
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Profiling Genome-Wide Specificity of CRISPR-Cas9 Using Digenome-Seq.
    Kim D; Kim JS
    Methods Mol Biol; 2021; 2162():233-242. PubMed ID: 32926386
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In Vitro Assays for Comparing the Specificity of First- and Next-Generation CRISPR/Cas9 Systems.
    Cromwell CR; Hubbard BP
    Methods Mol Biol; 2021; 2162():215-232. PubMed ID: 32926385
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Optimizing sgRNA length to improve target specificity and efficiency for the GGTA1 gene using the CRISPR/Cas9 gene editing system.
    Matson AW; Hosny N; Swanson ZA; Hering BJ; Burlak C
    PLoS One; 2019; 14(12):e0226107. PubMed ID: 31821359
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Methods for Measuring CRISPR/Cas9 DNA Cleavage in Cells.
    Cromwell CR; Jovel J; Hubbard BP
    Methods Mol Biol; 2021; 2162():197-213. PubMed ID: 32926384
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Screening DNA aptamers that control the DNA cleavage, homology-directed repair, and transcriptional regulation of the CRISPR-(d)Cas9 system.
    Huang X; Wang M; Wu X; Zou Y; Xu J; Cao C; Ma Q; Yu B; Liu Y; Gui Y
    Mol Ther; 2023 Jan; 31(1):260-268. PubMed ID: 36245127
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Combination of ssDNA recombineering and CRISPR-Cas9 for Pseudomonas putida KT2440 genome editing.
    Wu Z; Chen Z; Gao X; Li J; Shang G
    Appl Microbiol Biotechnol; 2019 Mar; 103(6):2783-2795. PubMed ID: 30762073
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Precise Regulation of Cas9-Mediated Genome Engineering by Anti-CRISPR-Based Inducible CRISPR Controllers.
    Jain S; Xun G; Abesteh S; Ho S; Lingamaneni M; Martin TA; Tasan I; Yang C; Zhao H
    ACS Synth Biol; 2021 Jun; 10(6):1320-1327. PubMed ID: 34006094
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Concurrent genome and epigenome editing by CRISPR-mediated sequence replacement.
    Alexander J; Findlay GM; Kircher M; Shendure J
    BMC Biol; 2019 Nov; 17(1):90. PubMed ID: 31739790
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A new method for the robust expression and single-step purification of dCas9 for CRISPR interference/activation (CRISPRi/a) applications.
    Pandey H; Yadav B; Shah K; Kaur R; Choudhary D; Sharma N; Rishi V
    Protein Expr Purif; 2024 Aug; 220():106500. PubMed ID: 38718989
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Doxycycline-Dependent Self-Inactivation of CRISPR-Cas9 to Temporally Regulate On- and Off-Target Editing.
    Kelkar A; Zhu Y; Groth T; Stolfa G; Stablewski AB; Singhi N; Nemeth M; Neelamegham S
    Mol Ther; 2020 Jan; 28(1):29-41. PubMed ID: 31601489
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Epigenome editing of the CFTR-locus for treatment of cystic fibrosis.
    Kabadi AM; Machlin L; Dalal N; Lee RE; McDowell I; Shah NN; Drowley L; Randell SH; Reddy TE
    J Cyst Fibros; 2022 Jan; 21(1):164-171. PubMed ID: 34049825
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High efficiency CRISPR/Cas9 genome editing system with an eliminable episomal sgRNA plasmid in Pichia pastoris.
    Yang Y; Liu G; Chen X; Liu M; Zhan C; Liu X; Bai Z
    Enzyme Microb Technol; 2020 Aug; 138():109556. PubMed ID: 32527526
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Points of View on the Tools for Genome/Gene Editing.
    Chuang CK; Lin WM
    Int J Mol Sci; 2021 Sep; 22(18):. PubMed ID: 34576035
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamic Genome Editing Using In Vivo Synthesized Donor ssDNA in
    Hao M; Wang Z; Qiao H; Yin P; Qiao J; Qi H
    Cells; 2020 Feb; 9(2):. PubMed ID: 32085579
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CRISPR/dCas9 Tools: Epigenetic Mechanism and Application in Gene Transcriptional Regulation.
    Cai R; Lv R; Shi X; Yang G; Jin J
    Int J Mol Sci; 2023 Oct; 24(19):. PubMed ID: 37834313
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A simple, quick, and efficient CRISPR/Cas9 genome editing method for human induced pluripotent stem cells.
    Geng BC; Choi KH; Wang SZ; Chen P; Pan XD; Dong NG; Ko JK; Zhu H
    Acta Pharmacol Sin; 2020 Nov; 41(11):1427-1432. PubMed ID: 32555510
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simple CRISPR-Cas9 Genome Editing in Saccharomyces cerevisiae.
    Laughery MF; Wyrick JJ
    Curr Protoc Mol Biol; 2019 Dec; 129(1):e110. PubMed ID: 31763795
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.