BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

366 related articles for article (PubMed ID: 37085907)

  • 1. Electrolyte-Wettability Issues and Challenges of Electrode Materials in Electrochemical Energy Storage, Energy Conversion, and Beyond.
    Zhao L; Li Y; Yu M; Peng Y; Ran F
    Adv Sci (Weinh); 2023 Jun; 10(17):e2300283. PubMed ID: 37085907
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrolyte-philicity of electrode materials.
    Zhao L; Ran F
    Chem Commun (Camb); 2023 Jun; 59(46):6969-6986. PubMed ID: 37165689
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recent Advancements in Electrochemical Deposition of Metal-Based Electrode Materials for Electrochemical Supercapacitors.
    Islam S; Mia MM; Shah SS; Naher S; Shaikh MN; Aziz MA; Ahammad AJS
    Chem Rec; 2022 Jul; 22(7):e202200013. PubMed ID: 35313076
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Opportunities of Flexible and Portable Electrochemical Devices for Energy Storage: Expanding the Spotlight onto Semi-solid/Solid Electrolytes.
    Fan X; Zhong C; Liu J; Ding J; Deng Y; Han X; Zhang L; Hu W; Wilkinson DP; Zhang J
    Chem Rev; 2022 Dec; 122(23):17155-17239. PubMed ID: 36239919
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Organic Electrode Materials for Energy Storage and Conversion: Mechanism, Characteristics, and Applications.
    Yuan S; Huang X; Kong T; Yan L; Wang Y
    Acc Chem Res; 2024 May; 57(10):1550-1563. PubMed ID: 38723018
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recent Advances in Faradic Electrochemical Deionization: System Architectures
    Liu Y; Wang K; Xu X; Eid K; Abdullah AM; Pan L; Yamauchi Y
    ACS Nano; 2021 Sep; 15(9):13924-13942. PubMed ID: 34498859
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Eutectic Electrolytes as a Promising Platform for Next-Generation Electrochemical Energy Storage.
    Zhang C; Zhang L; Yu G
    Acc Chem Res; 2020 Aug; 53(8):1648-1659. PubMed ID: 32672933
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrode-Electrolyte Interfaces in Lithium-Sulfur Batteries with Liquid or Inorganic Solid Electrolytes.
    Yu X; Manthiram A
    Acc Chem Res; 2017 Nov; 50(11):2653-2660. PubMed ID: 29112389
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Research Advances of Amorphous Metal Oxides in Electrochemical Energy Storage and Conversion.
    Yan S; Abhilash KP; Tang L; Yang M; Ma Y; Xia Q; Guo Q; Xia H
    Small; 2019 Jan; 15(4):e1804371. PubMed ID: 30548915
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ether-based electrolytes for sodium ion batteries.
    Li Y; Wu F; Li Y; Liu M; Feng X; Bai Y; Wu C
    Chem Soc Rev; 2022 Jun; 51(11):4484-4536. PubMed ID: 35543354
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Capacitive energy storage in nanostructured carbon-electrolyte systems.
    Simon P; Gogotsi Y
    Acc Chem Res; 2013 May; 46(5):1094-103. PubMed ID: 22670843
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Special Issue: Advances in Electrochemical Energy Materials.
    Li S; Fan Z
    Materials (Basel); 2020 Feb; 13(4):. PubMed ID: 32069808
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exploring the Carbon/Electrolyte Interface in Supercapacitors Operating in Highly Concentrated Aqueous Electrolytes.
    Neto C; Pham HTT; Omnée R; Canizarès A; Slodczyk A; Deschamps M; Raymundo-Piñero E
    ACS Appl Mater Interfaces; 2022 Oct; 14(39):44405-44418. PubMed ID: 36150165
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrochemical Interphases for High-Energy Storage Using Reactive Metal Anodes.
    Wei S; Choudhury S; Tu Z; Zhang K; Archer LA
    Acc Chem Res; 2018 Jan; 51(1):80-88. PubMed ID: 29227617
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanoscale Protection Layers To Mitigate Degradation in High-Energy Electrochemical Energy Storage Systems.
    Lin CF; Qi Y; Gregorczyk K; Lee SB; Rubloff GW
    Acc Chem Res; 2018 Jan; 51(1):97-106. PubMed ID: 29293316
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrolyte and Interphase Engineering of Aqueous Batteries Beyond "Water-in-Salt" Strategy.
    Xie J; Lin D; Lei H; Wu S; Li J; Mai W; Wang P; Hong G; Zhang W
    Adv Mater; 2024 Apr; 36(17):e2306508. PubMed ID: 37594442
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanistic Study of Controlled Zinc Electrodeposition Behaviors Facilitated by Nanoscale Electrolyte Additives at the Electrode Interface.
    Hamilton ST; Feric TG; Gładysiak A; Cantillo NM; Zawodzinski TA; Park AA
    ACS Appl Mater Interfaces; 2022 May; 14(19):22016-22029. PubMed ID: 35522595
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interface Issues and Challenges in All-Solid-State Batteries: Lithium, Sodium, and Beyond.
    Lou S; Zhang F; Fu C; Chen M; Ma Y; Yin G; Wang J
    Adv Mater; 2021 Feb; 33(6):e2000721. PubMed ID: 32705725
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ionic Liquid Electrolytes for Electrochemical Energy Storage Devices.
    Kim E; Han J; Ryu S; Choi Y; Yoo J
    Materials (Basel); 2021 Jul; 14(14):. PubMed ID: 34300918
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Advances in Mn-Based Electrode Materials for Aqueous Sodium-Ion Batteries.
    Ding C; Chen Z; Cao C; Liu Y; Gao Y
    Nanomicro Lett; 2023 Aug; 15(1):192. PubMed ID: 37555908
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.