BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

366 related articles for article (PubMed ID: 37085907)

  • 21. Catalytic Effects of Electrodes and Electrolytes in Metal-Sulfur Batteries: Progress and Prospective.
    Zeng L; Zhu J; Chu PK; Huang L; Wang J; Zhou G; Yu XF
    Adv Mater; 2022 Dec; 34(49):e2204636. PubMed ID: 35903947
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Transforming Waste into Wealth: Advanced Carbon-Based Electrodes Derived from Refinery and Coal By-Products for Next-Generation Energy Storage.
    Ferdous AR; Shah SS; Shah SNA; Johan BA; Al Bari MA; Aziz MA
    Molecules; 2024 Apr; 29(9):. PubMed ID: 38731570
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Electrochemical Thin Layers in Nanostructures for Energy Storage.
    Noked M; Liu C; Hu J; Gregorczyk K; Rubloff GW; Lee SB
    Acc Chem Res; 2016 Oct; 49(10):2336-2346. PubMed ID: 27636834
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Layered Transition Metal Dichalcogenide-Based Nanomaterials for Electrochemical Energy Storage.
    Yun Q; Li L; Hu Z; Lu Q; Chen B; Zhang H
    Adv Mater; 2020 Jan; 32(1):e1903826. PubMed ID: 31566269
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Interfaces and Materials in Lithium Ion Batteries: Challenges for Theoretical Electrochemistry.
    Kasnatscheew J; Wagner R; Winter M; Cekic-Laskovic I
    Top Curr Chem (Cham); 2018 Apr; 376(3):16. PubMed ID: 29671099
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Interfacial processes in electrochemical energy systems.
    Wang M; Feng Z
    Chem Commun (Camb); 2021 Oct; 57(81):10453-10468. PubMed ID: 34494049
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Research Progress on Applications of Polyaniline (PANI) for Electrochemical Energy Storage and Conversion.
    Li Z; Gong L
    Materials (Basel); 2020 Jan; 13(3):. PubMed ID: 31979286
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mesoporous Nanoarchitectures for Electrochemical Energy Conversion and Storage.
    Yan Y; Chen G; She P; Zhong G; Yan W; Guan BY; Yamauchi Y
    Adv Mater; 2020 Nov; 32(44):e2004654. PubMed ID: 32964570
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Emerging 2D Copper-Based Materials for Energy Storage and Conversion: A Review and Perspective.
    Ren X; Wang H; Chen J; Xu W; He Q; Wang H; Zhan F; Chen S; Chen L
    Small; 2023 Feb; 19(8):e2204121. PubMed ID: 36526607
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Materials for suspension (semi-solid) electrodes for energy and water technologies.
    Hatzell KB; Boota M; Gogotsi Y
    Chem Soc Rev; 2015 Dec; 44(23):8664-87. PubMed ID: 26412441
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Supercapacitors: An Efficient Way for Energy Storage Application.
    Czagany M; Hompoth S; Keshri AK; Pandit N; Galambos I; Gacsi Z; Baumli P
    Materials (Basel); 2024 Feb; 17(3):. PubMed ID: 38591562
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Predicting Wettability and the Electrochemical Window of Lithium-Metal/Solid Electrolyte Interfaces.
    Kim K; Siegel DJ
    ACS Appl Mater Interfaces; 2019 Oct; 11(43):39940-39950. PubMed ID: 31576739
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Optimizing the Electrolyte Systems for Na
    He J; Tao T; Yang F; Sun Z
    ChemSusChem; 2022 Apr; 15(8):e202102522. PubMed ID: 35050553
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Recent Progress and Challenges in the Optimization of Electrode Materials for Rechargeable Magnesium Batteries.
    Pei C; Xiong F; Yin Y; Liu Z; Tang H; Sun R; An Q; Mai L
    Small; 2021 Jan; 17(3):e2004108. PubMed ID: 33354934
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Probing the Electrode-Electrolyte Interface of Sodium/Glyme-Based Battery Electrolytes.
    Senadheera DI; Carrillo-Bohorquez O; Nachaki EO; Jorn R; Kuroda DG; Kumar R
    J Phys Chem C Nanomater Interfaces; 2024 Apr; 128(14):5798-5808. PubMed ID: 38629115
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Two-Dimensional Transition Metal Chalcogenides for Alkali Metal Ions Storage.
    Zhang Y; Zhang L; Lv T; Chu PK; Huo K
    ChemSusChem; 2020 Mar; 13(6):1114-1154. PubMed ID: 32150349
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The Li-ion rechargeable battery: a perspective.
    Goodenough JB; Park KS
    J Am Chem Soc; 2013 Jan; 135(4):1167-76. PubMed ID: 23294028
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Traditional salt-in-water electrolyte
    Sundaram MM; Appadoo D
    Dalton Trans; 2020 Aug; 49(33):11743-11755. PubMed ID: 32797136
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A Comparative Study on the Wettability of Unstructured and Structured LiFePO
    Berhe MG; Lee D
    Micromachines (Basel); 2021 May; 12(5):. PubMed ID: 34065286
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Electrolytes for Multivalent Metal-Ion Batteries: Current Status and Future Prospect.
    Zhang S; Long T; Zhang HZ; Zhao QY; Zhang F; Wu XW; Zeng XX
    ChemSusChem; 2022 Nov; 15(21):e202200999. PubMed ID: 35896517
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.