BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 37086103)

  • 1. Intracerebroventricular administration for delivery of antiseizure therapeutics: Challenges and opportunities.
    Fahoum F; Eyal S
    Epilepsia; 2023 Jul; 64(7):1750-1765. PubMed ID: 37086103
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nanotechnological advances in the treatment of epilepsy: a comprehensive review.
    Rai G; Sharma S; Bhasin J; Aggarwal K; Ahuja A; Dang S
    Nanotechnology; 2024 Jan; 35(15):. PubMed ID: 38194705
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Models in research of pharmacoresistant epilepsy: present and future in development of antiepileptic drugs.
    Kovács R; Heinemann U
    Curr Med Chem; 2014; 21(6):689-703. PubMed ID: 24251565
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of brain extracellular fluid, brain tissue, cerebrospinal fluid, and serum concentrations of antiepileptic drugs measured intraoperatively in patients with intractable epilepsy.
    Rambeck B; Jürgens UH; May TW; Pannek HW; Behne F; Ebner A; Gorji A; Straub H; Speckmann EJ; Pohlmann-Eden B; Löscher W
    Epilepsia; 2006 Apr; 47(4):681-94. PubMed ID: 16650134
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Delivery of therapeutic agents through intracerebroventricular (ICV) and intravenous (IV) injection in mice.
    Glascock JJ; Osman EY; Coady TH; Rose FF; Shababi M; Lorson CL
    J Vis Exp; 2011 Oct; (56):. PubMed ID: 21988897
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transependymal Cerebrospinal Fluid Flow: Opportunity for Drug Delivery?
    Casaca-Carreira J; Temel Y; Hescham SA; Jahanshahi A
    Mol Neurobiol; 2018 Apr; 55(4):2780-2788. PubMed ID: 28455692
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CNS transporters and drug delivery in epilepsy.
    Potschka H; Luna-Munguia H
    Curr Pharm Des; 2014; 20(10):1534-42. PubMed ID: 23789955
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intrathecal delivery of protein therapeutics to the brain: a critical reassessment.
    Calias P; Banks WA; Begley D; Scarpa M; Dickson P
    Pharmacol Ther; 2014 Nov; 144(2):114-22. PubMed ID: 24854599
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanisms of action of currently used antiseizure drugs.
    Sills GJ; Rogawski MA
    Neuropharmacology; 2020 May; 168():107966. PubMed ID: 32120063
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intrathecal application of ethosuximide is highly efficient in suppressing seizures in a genetic model of absence epilepsy.
    Buschhoff AS; Scherließ R; de Mooij-van Malsen JG; Schiffelholz T; Stephani U; Wulff P
    Epilepsy Res; 2022 Aug; 184():106967. PubMed ID: 35772325
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Blood-brain barrier dysfunction and epilepsy: pathophysiologic role and therapeutic approaches.
    Marchi N; Granata T; Ghosh C; Janigro D
    Epilepsia; 2012 Nov; 53(11):1877-86. PubMed ID: 22905812
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Potential new methods for antiepileptic drug delivery.
    Fisher RS; Ho J
    CNS Drugs; 2002; 16(9):579-93. PubMed ID: 12153331
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Neurovascular Drug Biotransformation Machinery in Focal Human Epilepsies: Brain CYP3A4 Correlates with Seizure Frequency and Antiepileptic Drug Therapy.
    Williams S; Hossain M; Ferguson L; Busch RM; Marchi N; Gonzalez-Martinez J; Perucca E; Najm IM; Ghosh C
    Mol Neurobiol; 2019 Dec; 56(12):8392-8407. PubMed ID: 31243719
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CNS drug delivery systems: novel approaches.
    Pathan SA; Iqbal Z; Zaidi SM; Talegaonkar S; Vohra D; Jain GK; Azeem A; Jain N; Lalani JR; Khar RK; Ahmad FJ
    Recent Pat Drug Deliv Formul; 2009 Jan; 3(1):71-89. PubMed ID: 19149731
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intranasal Drug Delivery: A Non-Invasive Approach for the Better Delivery of Neurotherapeutics.
    Kumar H; Mishra G; Sharma AK; Gothwal A; Kesharwani P; Gupta U
    Pharm Nanotechnol; 2017; 5(3):203-214. PubMed ID: 28521670
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bypassing the Blood-Brain Barrier: Direct Intracranial Drug Delivery in Epilepsies.
    Gernert M; Feja M
    Pharmaceutics; 2020 Nov; 12(12):. PubMed ID: 33255396
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The novel, catalytic mTORC1/2 inhibitor PQR620 and the PI3K/mTORC1/2 inhibitor PQR530 effectively cross the blood-brain barrier and increase seizure threshold in a mouse model of chronic epilepsy.
    Brandt C; Hillmann P; Noack A; Römermann K; Öhler LA; Rageot D; Beaufils F; Melone A; Sele AM; Wymann MP; Fabbro D; Löscher W
    Neuropharmacology; 2018 Sep; 140():107-120. PubMed ID: 30081001
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neuropathology of the blood-brain barrier and pharmaco-resistance in human epilepsy.
    Liu JY; Thom M; Catarino CB; Martinian L; Figarella-Branger D; Bartolomei F; Koepp M; Sisodiya SM
    Brain; 2012 Oct; 135(Pt 10):3115-33. PubMed ID: 22750659
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Insights into Potential Targets for Therapeutic Intervention in Epilepsy.
    Zavala-Tecuapetla C; Cuellar-Herrera M; Luna-Munguia H
    Int J Mol Sci; 2020 Nov; 21(22):. PubMed ID: 33202963
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Safety Evaluation of CNS Administered Biologics-Study Design, Data Interpretation, and Translation to the Clinic.
    Vuillemenot BR; Korte S; Wright TL; Adams EL; Boyd RB; Butt MT
    Toxicol Sci; 2016 Jul; 152(1):3-9. PubMed ID: 27354708
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.