These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 37086120)

  • 1. A Critical Review on the Recycling Strategy of Lithium Iron Phosphate from Electric Vehicles.
    Zhang M; Wang L; Wang S; Ma T; Jia F; Zhan C
    Small Methods; 2023 Jul; 7(7):e2300125. PubMed ID: 37086120
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Environment-friendly technology for recovering cathode materials from spent lithium iron phosphate batteries.
    Bi H; Zhu H; Zu L; Gao Y; Gao S; Bai Y
    Waste Manag Res; 2020 Aug; 38(8):911-920. PubMed ID: 32552572
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative life cycle assessment of LFP and NCM batteries including the secondary use and different recycling technologies.
    Quan J; Zhao S; Song D; Wang T; He W; Li G
    Sci Total Environ; 2022 May; 819():153105. PubMed ID: 35041948
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comprehensive Technology for Recycling and Regenerating Materials from Spent Lithium Iron Phosphate Battery.
    Lei S; Sun W; Yang Y
    Environ Sci Technol; 2024 Feb; 58(8):3609-3628. PubMed ID: 38329241
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Environmental impact assessment of second life and recycling for LiFePO
    Wang Y; Tang B; Shen M; Wu Y; Qu S; Hu Y; Feng Y
    J Environ Manage; 2022 Jul; 314():115083. PubMed ID: 35447455
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Eddy current separation for recovering aluminium and lithium-iron phosphate components of spent lithium-iron phosphate batteries.
    Bi H; Zhu H; Zu L; Gao Y; Gao S; Wu Z
    Waste Manag Res; 2019 Dec; 37(12):1217-1228. PubMed ID: 31486742
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A review on the recycling of spent lithium iron phosphate batteries.
    Zhao T; Li W; Traversy M; Choi Y; Ghahreman A; Zhao Z; Zhang C; Zhao W; Song Y
    J Environ Manage; 2024 Feb; 351():119670. PubMed ID: 38039588
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Environmentally friendly automated line for recovering aluminium and lithium iron phosphate components of spent lithium-iron phosphate batteries.
    Bi H; Zhu H; Zhan J; Zu L; Bai Y; Li H
    Waste Manag Res; 2021 Sep; 39(9):1164-1173. PubMed ID: 33407040
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Proof-of-Concept study of ion-exchange method for the recycling of LiFePO
    Zhang X; Liu Z; Qu D
    Waste Manag; 2023 Feb; 157():1-7. PubMed ID: 36512923
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Environment-friendly, efficient process for mechanical recovery of waste lithium iron phosphate batteries.
    Bai Y; Zhu H; Zu L; Zhang Y; Bi H
    Waste Manag Res; 2023 Oct; 41(10):1549-1558. PubMed ID: 37070218
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Circularity of Lithium-Ion Battery Materials in Electric Vehicles.
    Dunn J; Slattery M; Kendall A; Ambrose H; Shen S
    Environ Sci Technol; 2021 Apr; 55(8):5189-5198. PubMed ID: 33764763
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Circular economy strategies for mitigating metals shortages in electric vehicle batteries under China's carbon-neutral target.
    Hu Z; Yu B; Daigo I; Tan J; Sun F; Zhang S
    J Environ Manage; 2024 Feb; 352():120079. PubMed ID: 38242028
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Multifunctional Amino Acid Enables Direct Recycling of Spent LiFePO
    Tang D; Ji G; Wang J; Liang Z; Chen W; Ji H; Ma J; Liu S; Zhuang Z; Zhou G
    Adv Mater; 2024 Feb; 36(5):e2309722. PubMed ID: 38010273
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recycling and Reuse of Spent LIBs: Technological Advances and Future Directions.
    Lv L; Zhou S; Liu C; Sun Y; Zhang J; Bu C; Meng J; Huang Y
    Molecules; 2024 Jul; 29(13):. PubMed ID: 38999113
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Environmental Benefit Assessment of Second-Life Use of Electric Vehicle Lithium-Ion Batteries in Multiple Scenarios Considering Performance Degradation and Economic Value.
    Cui J; Tan Q; Liu L; Li J
    Environ Sci Technol; 2023 Jun; 57(23):8559-8567. PubMed ID: 37272409
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Future Perspective on Waste Management of Lithium-Ion Batteries for Electric Vehicles in Lao PDR: Current Status and Challenges.
    Noudeng V; Quan NV; Xuan TD
    Int J Environ Res Public Health; 2022 Dec; 19(23):. PubMed ID: 36498242
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Investigation on the thermo-electric-electrochemical characteristics of retired LFP batteries for echelon applications.
    Lv Y; Luo W; Mo Y; Zhang G
    RSC Adv; 2022 May; 12(22):14127-14136. PubMed ID: 35558830
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recycling of cathode material from spent lithium-ion batteries: Challenges and future perspectives.
    Raj T; Chandrasekhar K; Kumar AN; Sharma P; Pandey A; Jang M; Jeon BH; Varjani S; Kim SH
    J Hazard Mater; 2022 May; 429():128312. PubMed ID: 35086036
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lithium Iron Phosphate and Layered Transition Metal Oxide Cathode for Power Batteries: Attenuation Mechanisms and Modification Strategies.
    Zhang G; Li M; Ye Z; Chen T; Cao J; Yang H; Ma C; Jia Z; Xie J; Cui N; Xiong Y
    Materials (Basel); 2023 Aug; 16(17):. PubMed ID: 37687462
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sustainable Reuse and Recycling of Spent Li-Ion batteries from Electric Vehicles: Chemical, Environmental, and Economical Perspectives.
    Hantanasirisakul K; Sawangphruk M
    Glob Chall; 2023 Apr; 7(4):2200212. PubMed ID: 37020621
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.