These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
214 related articles for article (PubMed ID: 37086156)
21. Cerebrospinal fluid metabolomics identifies a key role of isocitrate dehydrogenase in bipolar disorder: evidence in support of mitochondrial dysfunction hypothesis. Yoshimi N; Futamura T; Bergen SE; Iwayama Y; Ishima T; Sellgren C; Ekman CJ; Jakobsson J; Pålsson E; Kakumoto K; Ohgi Y; Yoshikawa T; Landén M; Hashimoto K Mol Psychiatry; 2016 Nov; 21(11):1504-1510. PubMed ID: 26782057 [TBL] [Abstract][Full Text] [Related]
22. In silico gene expression analysis reveals glycolysis and acetate anaplerosis in IDH1 wild-type glioma and lactate and glutamate anaplerosis in IDH1-mutated glioma. Khurshed M; Molenaar RJ; Lenting K; Leenders WP; van Noorden CJF Oncotarget; 2017 Jul; 8(30):49165-49177. PubMed ID: 28467784 [TBL] [Abstract][Full Text] [Related]
23. Tricarboxylic acid cycle enzyme activities in a mouse model of methylmalonic aciduria. Wongkittichote P; Cunningham G; Summar ML; Pumbo E; Forny P; Baumgartner MR; Chapman KA Mol Genet Metab; 2019 Dec; 128(4):444-451. PubMed ID: 31648943 [TBL] [Abstract][Full Text] [Related]
24. Metabolomics and transcriptomics profiles reveal the dysregulation of the tricarboxylic acid cycle and related mechanisms in prostate cancer. Shao Y; Ye G; Ren S; Piao HL; Zhao X; Lu X; Wang F; Ma W; Li J; Yin P; Xia T; Xu C; Yu JJ; Sun Y; Xu G Int J Cancer; 2018 Jul; 143(2):396-407. PubMed ID: 29441565 [TBL] [Abstract][Full Text] [Related]
25. Multiple metabolic pathways fuel the truncated tricarboxylic acid cycle of the prostate to sustain constant citrate production and secretion. Frégeau-Proulx L; Lacouture A; Berthiaume L; Weidmann C; Harvey M; Gonthier K; Pelletier JF; Neveu B; Jobin C; Bastien D; Bergeron A; Fradet Y; Lacombe L; Laverdière I; Atallah C; Pouliot F; Audet-Walsh É Mol Metab; 2022 Aug; 62():101516. PubMed ID: 35598879 [TBL] [Abstract][Full Text] [Related]
26. IDH2 reprograms mitochondrial dynamics in cancer through a HIF-1α Wang Y; Agarwal E; Bertolini I; Ghosh JC; Seo JH; Altieri DC FASEB J; 2019 Dec; 33(12):13398-13411. PubMed ID: 31530011 [TBL] [Abstract][Full Text] [Related]
27. NADP(+)-IDH Mutations Promote Hypersuccinylation that Impairs Mitochondria Respiration and Induces Apoptosis Resistance. Li F; He X; Ye D; Lin Y; Yu H; Yao C; Huang L; Zhang J; Wang F; Xu S; Wu X; Liu L; Yang C; Shi J; He X; Liu J; Qu Y; Guo F; Zhao J; Xu W; Zhao S Mol Cell; 2015 Nov; 60(4):661-75. PubMed ID: 26585387 [TBL] [Abstract][Full Text] [Related]
29. Alternol eliminates excessive ATP production by disturbing Krebs cycle in prostate cancer. Li C; He C; Xu Y; Xu H; Tang Y; Chavan H; Duan S; Artigues A; Forrest ML; Krishnamurthy P; Han S; Holzbeierlein JM; Li B Prostate; 2019 May; 79(6):628-639. PubMed ID: 30663084 [TBL] [Abstract][Full Text] [Related]
30. Assembly and function of a cytosolic form of NADH-specific isocitrate dehydrogenase in yeast. Zhao WN; McAlister-Henn L J Biol Chem; 1996 Apr; 271(17):10347-52. PubMed ID: 8626605 [TBL] [Abstract][Full Text] [Related]
31. Isocitrate dehydrogenase (IDH), succinate dehydrogenase (SDH), fumarate hydratase (FH): three players for one phenotype in cancer? Laurenti G; Tennant DA Biochem Soc Trans; 2016 Aug; 44(4):1111-6. PubMed ID: 27528759 [TBL] [Abstract][Full Text] [Related]
32. Glioma cells with the IDH1 mutation modulate metabolic fractional flux through pyruvate carboxylase. Izquierdo-Garcia JL; Cai LM; Chaumeil MM; Eriksson P; Robinson AE; Pieper RO; Phillips JJ; Ronen SM PLoS One; 2014; 9(9):e108289. PubMed ID: 25243911 [TBL] [Abstract][Full Text] [Related]
33. Screen for IDH1, IDH2, IDH3, D2HGDH and L2HGDH mutations in glioblastoma. Krell D; Assoku M; Galloway M; Mulholland P; Tomlinson I; Bardella C PLoS One; 2011; 6(5):e19868. PubMed ID: 21625441 [TBL] [Abstract][Full Text] [Related]
34. Metabolic changes related to the IDH1 mutation in gliomas preserve TCA-cycle activity: An investigation at the protein level. Dekker LJM; Wu S; Jurriëns C; Mustafa DAN; Grevers F; Burgers PC; Sillevis Smitt PAE; Kros JM; Luider TM FASEB J; 2020 Mar; 34(3):3646-3657. PubMed ID: 31960518 [TBL] [Abstract][Full Text] [Related]
35. Reverse TCA cycle flux through isocitrate dehydrogenases 1 and 2 is required for lipogenesis in hypoxic melanoma cells. Filipp FV; Scott DA; Ronai ZA; Osterman AL; Smith JW Pigment Cell Melanoma Res; 2012 May; 25(3):375-83. PubMed ID: 22360810 [TBL] [Abstract][Full Text] [Related]
36. Profiling the effects of isocitrate dehydrogenase 1 and 2 mutations on the cellular metabolome. Reitman ZJ; Jin G; Karoly ED; Spasojevic I; Yang J; Kinzler KW; He Y; Bigner DD; Vogelstein B; Yan H Proc Natl Acad Sci U S A; 2011 Feb; 108(8):3270-5. PubMed ID: 21289278 [TBL] [Abstract][Full Text] [Related]
37. Identification of a novel inactivating mutation in Isocitrate Dehydrogenase 1 (IDH1-R314C) in a high grade astrocytoma. van Lith SA; Navis AC; Lenting K; Verrijp K; Schepens JT; Hendriks WJ; Schubert NA; Venselaar H; Wevers RA; van Rooij A; Wesseling P; Molenaar RJ; van Noorden CJ; Pusch S; Tops B; Leenders WP Sci Rep; 2016 Jul; 6():30486. PubMed ID: 27460417 [TBL] [Abstract][Full Text] [Related]
38. Kinetic and physiological effects of alterations in homologous isocitrate-binding sites of yeast NAD(+)-specific isocitrate dehydrogenase. Lin AP; McCammon MT; McAlister-Henn L Biochemistry; 2001 Nov; 40(47):14291-301. PubMed ID: 11714283 [TBL] [Abstract][Full Text] [Related]
39. Mutation of Su L; Zhang X; Zheng L; Wang M; Zhu Z; Li P Front Endocrinol (Lausanne); 2020; 11():189. PubMed ID: 32373065 [No Abstract] [Full Text] [Related]