These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 37086187)

  • 1. Interpenetrating Hollow Microlattice Metamaterial Enables Efficient Sound-Absorptive and Deformation-Recoverable Capabilities.
    Li Z; Li X; Wang X; Wang Z; Zhai W
    ACS Appl Mater Interfaces; 2023 May; 15(20):24868-24879. PubMed ID: 37086187
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Less Is More: Hollow-Truss Microlattice Metamaterials with Dual Sound Dissipation Mechanisms and Enhanced Broadband Sound Absorption.
    Li X; Yu X; Zhai W
    Small; 2022 Nov; 18(44):e2204145. PubMed ID: 36135783
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microlattice Metamaterials with Simultaneous Superior Acoustic and Mechanical Energy Absorption.
    Li X; Yu X; Chua JW; Lee HP; Ding J; Zhai W
    Small; 2021 Jun; 17(24):e2100336. PubMed ID: 33984173
    [TBL] [Abstract][Full Text] [Related]  

  • 4. New Class of Multifunctional Bioinspired Microlattice with Excellent Sound Absorption, Damage Tolerance, and High Specific Strength.
    Li Z; Wang X; Li X; Wang Z; Zhai W
    ACS Appl Mater Interfaces; 2023 Jan; ():. PubMed ID: 36655583
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Additively Manufactured Deformation-Recoverable and Broadband Sound-Absorbing Microlattice Inspired by the Concept of Traditional Perforated Panels.
    Li X; Yu X; Zhai W
    Adv Mater; 2021 Nov; 33(44):e2104552. PubMed ID: 34532911
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multifunctional sound-absorbing and mechanical metamaterials
    Li Z; Li X; Wang Z; Zhai W
    Mater Horiz; 2023 Jan; 10(1):75-87. PubMed ID: 36300521
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Superior Strength, Toughness, and Damage-Tolerance Observed in Microlattices of Aperiodic Unit Cells.
    Wang X; Li X; Li Z; Wang Z; Zhai W
    Small; 2024 Jun; 20(23):e2307369. PubMed ID: 38183382
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Elastically Isotropic Truss-Plate-Hybrid Hierarchical Microlattices with Enhanced Modulus and Strength.
    Wang Y; Xu F; Gao H; Li X
    Small; 2023 May; 19(18):e2206024. PubMed ID: 36748308
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanical Enhancement of Core-Shell Microlattices through High-Entropy Alloy Coating.
    Surjadi JU; Gao L; Cao K; Fan R; Lu Y
    Sci Rep; 2018 Apr; 8(1):5442. PubMed ID: 29615746
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sound absorption by acoustic microlattice with optimized pore configuration.
    Cai X; Yang J; Hu G; Lu T
    J Acoust Soc Am; 2018 Aug; 144(2):EL138. PubMed ID: 30180656
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of Internal Microstructure Distribution on Quasi-Static Compression Behavior and Energy Absorption of Hollow Truss Structures.
    Ren H; Shen H; Ning J
    Materials (Basel); 2020 Nov; 13(22):. PubMed ID: 33198095
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Experiment Investigation of the Compression Behaviors of Nickel-Coated Hybrid Lattice Structure with Enhanced Mechanical Properties.
    Geng X; Wang M; Hou B
    Micromachines (Basel); 2023 Oct; 14(10):. PubMed ID: 37893396
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of Adjustable Parallel Helmholtz Acoustic Metamaterial for Broad Low-Frequency Sound Absorption Band.
    Yang X; Yang F; Shen X; Wang E; Zhang X; Shen C; Peng W
    Materials (Basel); 2022 Aug; 15(17):. PubMed ID: 36079319
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Liquid Metal-Polymer Microlattice Metamaterials with High Fracture Toughness and Damage Recoverability.
    Zhang W; Chen J; Li X; Lu Y
    Small; 2020 Nov; 16(46):e2004190. PubMed ID: 33103341
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanical Properties and In Situ Deformation Imaging of Microlattices Manufactured by Laser Based Powder Bed Fusion.
    Du Plessis A; Kouprianoff DP; Yadroitsava I; Yadroitsev I
    Materials (Basel); 2018 Sep; 11(9):. PubMed ID: 30205590
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ultralow Thermal Conductivity and Mechanical Resilience of Architected Nanolattices.
    Dou NG; Jagt RA; Portela CM; Greer JR; Minnich AJ
    Nano Lett; 2018 Aug; 18(8):4755-4761. PubMed ID: 30022671
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functional Hollow Ceramic Microsphere/Flexible Polyurethane Foam Composites with a Cell Structure: Mechanical Property and Sound Absorptivity.
    Lin JH; Hsu PY; Huang CH; Lai MF; Shiu BC; Lou CW
    Polymers (Basel); 2022 Feb; 14(5):. PubMed ID: 35267736
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Catastrophic vs gradual collapse of thin-walled nanocrystalline Ni hollow cylinders as building blocks of microlattice structures.
    Lian J; Jang D; Valdevit L; Schaedler TA; Jacobsen AJ; B Carter W; Greer JR
    Nano Lett; 2011 Oct; 11(10):4118-25. PubMed ID: 21851060
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Broadband Sound Absorption and High Damage Resistance in a Turtle Shell-Inspired Multifunctional Lattice: Neural Network-Driven Design and Optimization.
    Feng J; Qiao J; Xu Q; Wu Y; Zhang G; Li L
    Small; 2024 Jun; ():e2403254. PubMed ID: 38845466
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Resilient 3D hierarchical architected metamaterials.
    Meza LR; Zelhofer AJ; Clarke N; Mateos AJ; Kochmann DM; Greer JR
    Proc Natl Acad Sci U S A; 2015 Sep; 112(37):11502-7. PubMed ID: 26330605
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.