These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
166 related articles for article (PubMed ID: 3708637)
1. Biochemical mechanisms of acute contractile failure in the hypoxic rat heart. Matthews PM; Taylor DJ; Radda GK Cardiovasc Res; 1986 Jan; 20(1):13-9. PubMed ID: 3708637 [TBL] [Abstract][Full Text] [Related]
2. The role of accumulation of sodium and calcium on contractile failure of the hypoxic/reoxygenated heart. Tanonaka K; Niwa T; Takeo S Jpn Heart J; 1996 Jan; 37(1):105-17. PubMed ID: 8632618 [TBL] [Abstract][Full Text] [Related]
3. Contractile failure and high-energy phosphate turnover during hypoxia: 31P-NMR surface coil studies in living rat. Bittl JA; Balschi JA; Ingwall JS Circ Res; 1987 Jun; 60(6):871-8. PubMed ID: 2954720 [TBL] [Abstract][Full Text] [Related]
4. Relation of myocardial oxygen consumption and function to high energy phosphate utilization during graded hypoxia and reoxygenation in sheep in vivo. Portman MA; Standaert TA; Ning XH J Clin Invest; 1995 May; 95(5):2134-42. PubMed ID: 7738181 [TBL] [Abstract][Full Text] [Related]
5. Cardiac contractile function, oxygen consumption rate and cytosolic phosphates during inhibition of electron flux by amytal--a 31P-NMR study. Kupriyanov VV; Lakomkin VL; Korchazhkina OV; Stepanov VA; Steinschneider AYa ; Kapelko VI Biochim Biophys Acta; 1991 Jul; 1058(3):386-99. PubMed ID: 2065062 [TBL] [Abstract][Full Text] [Related]
6. Verapamil attenuates ATP depletion during hypoxia: 31P NMR studies of the isolated rat heart. Neubauer S; Ingwall JS J Mol Cell Cardiol; 1989 Nov; 21(11):1163-78. PubMed ID: 2607547 [TBL] [Abstract][Full Text] [Related]
7. Regulation of systolic force and control of free energy of ATP-hydrolysis in hypoxic hearts. Kammermeier H; Roeb E; Jüngling E; Meyer B J Mol Cell Cardiol; 1990 Jun; 22(6):707-13. PubMed ID: 2231738 [TBL] [Abstract][Full Text] [Related]
8. Myocardial adaptation during acute hibernation: mechanisms of phosphocreatine recovery. Schaefer S; Carr LJ; Kreutzer U; Jue T Cardiovasc Res; 1993 Nov; 27(11):2044-51. PubMed ID: 8287416 [TBL] [Abstract][Full Text] [Related]
9. Adaptation to chronic hypoxia alters cardiac metabolic response to beta stimulation: novel face of phosphocreatine overshoot phenomenon. Novel-Chaté V; Aussedat J; Saks VA; Rossi A J Mol Cell Cardiol; 1995 Aug; 27(8):1679-87. PubMed ID: 8523430 [TBL] [Abstract][Full Text] [Related]
10. Alteration of the cytosolic-mitochondrial distribution of high-energy phosphates during global myocardial ischemia may contribute to early contractile failure. Rauch U; Schulze K; Witzenbichler B; Schultheiss HP Circ Res; 1994 Oct; 75(4):760-9. PubMed ID: 7923621 [TBL] [Abstract][Full Text] [Related]
11. Cytosolic free magnesium in stimulated, hypoxic, and underperfused rat heart. Headrick JP; Willis RJ J Mol Cell Cardiol; 1991 Sep; 23(9):991-9. PubMed ID: 1658349 [TBL] [Abstract][Full Text] [Related]
12. Hypoperfusion-induced contractile failure does not require changes in cardiac energetics. Saupe KW; Eberli FR; Ingwall JS; Apstein CS Am J Physiol; 1999 May; 276(5):H1715-23. PubMed ID: 10330258 [TBL] [Abstract][Full Text] [Related]
13. Determination of buffering capacity of rat myocardium during ischemia. Wolfe CL; Gilbert HF; Brindle KM; Radda GK Biochim Biophys Acta; 1988 Aug; 971(1):9-20. PubMed ID: 2841984 [TBL] [Abstract][Full Text] [Related]
14. Interaction of hypoxia and aging in the heart: analysis of high energy phosphate content. Bak MI; Wei JY; Ingwall JS J Mol Cell Cardiol; 1998 Mar; 30(3):661-72. PubMed ID: 9515041 [TBL] [Abstract][Full Text] [Related]
15. A nuclear magnetic resonance study of metabolism in the ferret heart during hypoxia and inhibition of glycolysis. Allen DG; Morris PG; Orchard CH; Pirolo JS J Physiol; 1985 Apr; 361():185-204. PubMed ID: 3989725 [TBL] [Abstract][Full Text] [Related]
16. Sustained function of normoxic hearts depleted in ATP and phosphocreatine: a 31P-NMR study. Hoerter JA; Lauer C; Vassort G; Guéron M Am J Physiol; 1988 Aug; 255(2 Pt 1):C192-201. PubMed ID: 3407764 [TBL] [Abstract][Full Text] [Related]
17. Relationship between intracellular pH and metabolite concentrations during metabolic inhibition in isolated ferret heart. Smith GL; Donoso P; Bauer CJ; Eisner DA J Physiol; 1993 Dec; 472():11-22. PubMed ID: 8145137 [TBL] [Abstract][Full Text] [Related]
18. 31P-NMR measurements of pHi and high-energy phosphates in isolated turtle hearts during anoxia and acidosis. Wasser JS; Inman KC; Arendt EA; Lawler RG; Jackson DC Am J Physiol; 1990 Sep; 259(3 Pt 2):R521-30. PubMed ID: 2396711 [TBL] [Abstract][Full Text] [Related]
19. Myocardial performance and free energy of ATP-hydrolysis in isolated rat hearts during graded hypoxia, reoxygenation and high Ke+-perfusion. Griese M; Perlitz V; Jüngling E; Kammermeier H J Mol Cell Cardiol; 1988 Dec; 20(12):1189-201. PubMed ID: 3249307 [TBL] [Abstract][Full Text] [Related]
20. Interrelationship between the free energy change of ATP-hydrolysis, cytosolic inorganic phosphate and cardiac performance during hypoxia and reoxygenation. Kammermeier H Biomed Biochim Acta; 1987; 46(8-9):S499-504. PubMed ID: 3435508 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]