These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 37086442)

  • 1. DIGGER-Bac: prediction of seed regions for high-fidelity construction of synthetic small RNAs in bacteria.
    Philipp N; Brinkmann CK; Georg J; Schindler D; Berghoff BA
    Bioinformatics; 2023 May; 39(5):. PubMed ID: 37086442
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In Silico Design, In Vitro Construction, and In Vivo Application of Synthetic Small Regulatory RNAs in Bacteria.
    Brück M; Berghoff BA; Schindler D
    Methods Mol Biol; 2024; 2760():479-507. PubMed ID: 38468105
    [TBL] [Abstract][Full Text] [Related]  

  • 3. sRNA Target Prediction Organizing Tool (SPOT) Integrates Computational and Experimental Data To Facilitate Functional Characterization of Bacterial Small RNAs.
    King AM; Vanderpool CK; Degnan PH
    mSphere; 2019 Jan; 4(1):. PubMed ID: 30700509
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An Easy-to-Use Plasmid Toolset for Efficient Generation and Benchmarking of Synthetic Small RNAs in Bacteria.
    Köbel TS; Melo Palhares R; Fromm C; Szymanski W; Angelidou G; Glatter T; Georg J; Berghoff BA; Schindler D
    ACS Synth Biol; 2022 Sep; 11(9):2989-3003. PubMed ID: 36044590
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Small RNA-mediated regulation in bacteria: A growing palette of diverse mechanisms.
    Dutta T; Srivastava S
    Gene; 2018 May; 656():60-72. PubMed ID: 29501814
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Competing endogenous RNAs: a target-centric view of small RNA regulation in bacteria.
    Bossi L; Figueroa-Bossi N
    Nat Rev Microbiol; 2016 Dec; 14(12):775-784. PubMed ID: 27640758
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kinetic modeling reveals additional regulation at co-transcriptional level by post-transcriptional sRNA regulators.
    Reyer MA; Chennakesavalu S; Heideman EM; Ma X; Bujnowska M; Hong L; Dinner AR; Vanderpool CK; Fei J
    Cell Rep; 2021 Sep; 36(13):109764. PubMed ID: 34592145
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamic interactions between the RNA chaperone Hfq, small regulatory RNAs, and mRNAs in live bacterial cells.
    Park S; Prévost K; Heideman EM; Carrier MC; Azam MS; Reyer MA; Liu W; Massé E; Fei J
    Elife; 2021 Feb; 10():. PubMed ID: 33616037
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Modular Genetic System for High-Throughput Profiling and Engineering of Multi-Target Small RNAs.
    Stimple SD; Lahiry A; Taris JE; Wood DW; Lease RA
    Methods Mol Biol; 2018; 1737():373-391. PubMed ID: 29484604
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Integration of Bacterial Small RNAs in Regulatory Networks.
    Nitzan M; Rehani R; Margalit H
    Annu Rev Biophys; 2017 May; 46():131-148. PubMed ID: 28532217
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hfq CLASH uncovers sRNA-target interaction networks linked to nutrient availability adaptation.
    Iosub IA; van Nues RW; McKellar SW; Nieken KJ; Marchioretto M; Sy B; Tree JJ; Viero G; Granneman S
    Elife; 2020 May; 9():. PubMed ID: 32356726
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Phosphorolytic Exoribonucleases Polynucleotide Phosphorylase and RNase PH Stabilize sRNAs and Facilitate Regulation of Their mRNA Targets.
    Cameron TA; De Lay NR
    J Bacteriol; 2016 Dec; 198(24):3309-3317. PubMed ID: 27698082
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Contributions of the Hfq protein to translation regulation by small noncoding RNAs binding to the mRNA coding sequence.
    Wroblewska Z; Olejniczak M
    Acta Biochim Pol; 2016; 63(4):701-707. PubMed ID: 27878140
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Experimental approaches to identify small RNAs and their diverse roles in bacteria--what we have learnt in one decade of MicA research.
    Van Puyvelde S; Vanderleyden J; De Keersmaecker SC
    Microbiologyopen; 2015 Oct; 4(5):699-711. PubMed ID: 25974745
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The power of cooperation: Experimental and computational approaches in the functional characterization of bacterial sRNAs.
    Georg J; Lalaouna D; Hou S; Lott SC; Caldelari I; Marzi S; Hess WR; Romby P
    Mol Microbiol; 2020 Mar; 113(3):603-612. PubMed ID: 31705780
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Toward a Comprehensive Analysis of Posttranscriptional Regulatory Networks: a New Tool for the Identification of Small RNA Regulators of Specific mRNAs.
    Han K; Lory S
    mBio; 2021 Feb; 12(1):. PubMed ID: 33622723
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An overview of gene regulation in bacteria by small RNAs derived from mRNA 3' ends.
    Ponath F; Hör J; Vogel J
    FEMS Microbiol Rev; 2022 Sep; 46(5):. PubMed ID: 35388892
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Sponge RNAs of bacteria - How to find them and their role in regulating the post-transcriptional network.
    Denham EL
    Biochim Biophys Acta Gene Regul Mech; 2020 Aug; 1863(8):194565. PubMed ID: 32475775
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Broad-Spectrum Gene Repression Using Scaffold Engineering of Synthetic sRNAs.
    Noh M; Yoo SM; Yang D; Lee SY
    ACS Synth Biol; 2019 Jun; 8(6):1452-1461. PubMed ID: 31132322
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulation of Transcription Termination of Small RNAs and by Small RNAs: Molecular Mechanisms and Biological Functions.
    Chen J; Morita T; Gottesman S
    Front Cell Infect Microbiol; 2019; 9():201. PubMed ID: 31249814
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.