BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 37086523)

  • 1. The practical process of manufacturing poly(methyl methacrylate)-based scaffolds having high porosity and high strength.
    Indra A; Razi R; Jasmayeti R; Fauzan A; Wahyudi D; Handra N; Subardi A; Susanto I; Iswandi ; Purnomo MJ
    J Mech Behav Biomed Mater; 2023 Jun; 142():105862. PubMed ID: 37086523
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Manufacturing hydroxyapatite scaffold from snapper scales with green phenolic granules as the space holder material.
    Indra A; Hamid I; Farenza J; Handra N; Anrinal ; Subardi A
    J Mech Behav Biomed Mater; 2022 Dec; 136():105509. PubMed ID: 36240527
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 3D interconnected porous PMMA scaffold integrating with advanced nanostructured CaP-based biomaterials for rapid bone repair and regeneration.
    Elakkiya K; Bargavi P; Balakumar S
    J Mech Behav Biomed Mater; 2023 Nov; 147():106106. PubMed ID: 37708780
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effect of processing parameters and solid concentration on the mechanical and microstructural properties of freeze-casted macroporous hydroxyapatite scaffolds.
    Farhangdoust S; Zamanian A; Yasaei M; Khorami M
    Mater Sci Eng C Mater Biol Appl; 2013 Jan; 33(1):453-60. PubMed ID: 25428095
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microwave-sintered 3D printed tricalcium phosphate scaffolds for bone tissue engineering.
    Tarafder S; Balla VK; Davies NM; Bandyopadhyay A; Bose S
    J Tissue Eng Regen Med; 2013 Aug; 7(8):631-41. PubMed ID: 22396130
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Preparation of high strength macroporous hydroxyapatite scaffold.
    Swain SK; Bhattacharyya S
    Mater Sci Eng C Mater Biol Appl; 2013 Jan; 33(1):67-71. PubMed ID: 25428044
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fabrication of porous poly(L-lactide) (PLLA) scaffolds for tissue engineering using liquid-liquid phase separation and freeze extraction.
    Budyanto L; Goh YQ; Ooi CP
    J Mater Sci Mater Med; 2009 Jan; 20(1):105-11. PubMed ID: 18704655
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The first systematic analysis of 3D rapid prototyped poly(ε-caprolactone) scaffolds manufactured through BioCell printing: the effect of pore size and geometry on compressive mechanical behaviour and in vitro hMSC viability.
    Domingos M; Intranuovo F; Russo T; De Santis R; Gloria A; Ambrosio L; Ciurana J; Bartolo P
    Biofabrication; 2013 Dec; 5(4):045004. PubMed ID: 24192056
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Preparation of hydroxyapatite/poly(methyl methacrylate) and calcium silicate/poly(methyl methacrylate) interpenetrating hybrid composites.
    Monvisade P; Siriphannon P; Jermsungnern R; Rattanabodee S
    J Mater Sci Mater Med; 2007 Oct; 18(10):1955-9. PubMed ID: 17554595
    [TBL] [Abstract][Full Text] [Related]  

  • 10. One-step method for the preparation of poly(methyl methacrylate) modified titanium-bioactive glass three-dimensional scaffolds for bone tissue engineering.
    Han X; Lin H; Chen X; Li X; Guo G; Qu F
    IET Nanobiotechnol; 2016 Apr; 10(2):45-53. PubMed ID: 27074853
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fabrication of bimodal open-porous poly (butylene succinate)/cellulose nanocrystals composite scaffolds for tissue engineering application.
    Ju J; Gu Z; Liu X; Zhang S; Peng X; Kuang T
    Int J Biol Macromol; 2020 Mar; 147():1164-1173. PubMed ID: 31751685
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The influence of sintering conditions on microstructure and mechanical properties of titanium dioxide scaffolds for the treatment of bone tissue defects.
    Rumian Ł; Reczyńska K; Wrona M; Tiainen H; Haugen HJ; Pamuła E
    Acta Bioeng Biomech; 2015; 17(1):3-9. PubMed ID: 25951708
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bioactive glass-reinforced bioceramic ink writing scaffolds: sintering, microstructure and mechanical behavior.
    Shao H; Yang X; He Y; Fu J; Liu L; Ma L; Zhang L; Yang G; Gao C; Gou Z
    Biofabrication; 2015 Sep; 7(3):035010. PubMed ID: 26355654
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis of bioactive heat cured PMMA/PEKK blend reinforced by nano titanium dioxide for bone scaffold applications.
    AbdulHussain Kadhum S; Nassir NA
    J Mech Behav Biomed Mater; 2024 Feb; 150():106258. PubMed ID: 38000162
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Oriented bioactive glass (13-93) scaffolds with controllable pore size by unidirectional freezing of camphene-based suspensions: Microstructure and mechanical response.
    Liu X; Rahaman MN; Fu Q
    Acta Biomater; 2011 Jan; 7(1):406-16. PubMed ID: 20807594
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A novel nano-hydroxyapatite - PMMA hybrid scaffolds adopted by conjugated thermal induced phase separation (TIPS) and wet-chemical approach: Analysis of its mechanical and biological properties.
    G R; S B; Venkatesan B; Vellaichamy E
    Mater Sci Eng C Mater Biol Appl; 2017 Jun; 75():221-228. PubMed ID: 28415457
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fabrication of β-tricalcium phosphate composite ceramic sphere-based scaffolds with hierarchical pore structure for bone regeneration.
    He F; Qian G; Ren W; Li J; Fan P; Shi H; Shi X; Deng X; Wu S; Ye J
    Biofabrication; 2017 Apr; 9(2):025005. PubMed ID: 28361794
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis, microstructure, and mechanical behaviour of a unique porous PHBV scaffold manufactured using selective laser sintering.
    Diermann SH; Lu M; Zhao Y; Vandi LJ; Dargusch M; Huang H
    J Mech Behav Biomed Mater; 2018 Aug; 84():151-160. PubMed ID: 29778988
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of mechanical property and bioactivity of nano-bioglass 45S5 scaffold coated with poly-3-hydroxybutyrate.
    Montazeri M; Karbasi S; Foroughi MR; Monshi A; Ebrahimi-Kahrizsangi R
    J Mater Sci Mater Med; 2015 Feb; 26(2):62. PubMed ID: 25631260
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of porous fluorohydroxyapatite bone-scaffolds fabricated using freeze casting.
    Yin TJ; Jeyapalina S; Naleway SE
    J Mech Behav Biomed Mater; 2021 Nov; 123():104717. PubMed ID: 34352488
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.