BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 37086532)

  • 1. Bimetal-organic framework-derived porous CoFe
    Ren T; Liu Y; Shi C; Li C
    J Colloid Interface Sci; 2023 Aug; 643():428-436. PubMed ID: 37086532
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-Performance Macroporous Free-Standing Microbial Fuel Cell Anode Derived from Grape for Efficient Power Generation and Brewery Wastewater Treatment.
    Sun JZ; Shu QC; Sun HW; Liu YC; Yang XY; Zhang YX; Wang G
    Molecules; 2024 Jun; 29(12):. PubMed ID: 38931000
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Activated microporous-mesoporous carbon derived from chestnut shell as a sustainable anode material for high performance microbial fuel cells.
    Chen Q; Pu W; Hou H; Hu J; Liu B; Li J; Cheng K; Huang L; Yuan X; Yang C; Yang J
    Bioresour Technol; 2018 Feb; 249():567-573. PubMed ID: 29091839
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microorganism-immobilized carbon nanoparticle anode for microbial fuel cells based on direct electron transfer.
    Yuan Y; Zhou S; Xu N; Zhuang L
    Appl Microbiol Biotechnol; 2011 Mar; 89(5):1629-35. PubMed ID: 21120470
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bread-derived 3D macroporous carbon foams as high performance free-standing anode in microbial fuel cells.
    Zhang L; He W; Yang J; Sun J; Li H; Han B; Zhao S; Shi Y; Feng Y; Tang Z; Liu S
    Biosens Bioelectron; 2018 Dec; 122():217-223. PubMed ID: 30265972
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Carbon nanotubes encapsulating FeS
    Liu Y; Sun Y; Zhang M; Guo S; Su Z; Ren T; Li C
    J Colloid Interface Sci; 2023 Jan; 629(Pt B):970-979. PubMed ID: 36208609
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Anode modification by biogenic gold nanoparticles for the improved performance of microbial fuel cells and microbial community shift.
    Wu X; Xiong X; Owens G; Brunetti G; Zhou J; Yong X; Xie X; Zhang L; Wei P; Jia H
    Bioresour Technol; 2018 Dec; 270():11-19. PubMed ID: 30199701
    [TBL] [Abstract][Full Text] [Related]  

  • 8. PDA-Fe
    Zhang C; Zeng X; Xu X; Nie W; Dubey BK; Ding W
    Chemosphere; 2024 May; 355():141764. PubMed ID: 38521108
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Three-dimensional carbon nanotube-textile anode for high-performance microbial fuel cells.
    Xie X; Hu L; Pasta M; Wells GF; Kong D; Criddle CS; Cui Y
    Nano Lett; 2011 Jan; 11(1):291-6. PubMed ID: 21158405
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhancing microbial fuel cell performance using anode modified with Fe
    Zheng X; Hou S; Amanze C; Zeng Z; Zeng W
    Bioprocess Biosyst Eng; 2022 May; 45(5):877-890. PubMed ID: 35166901
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanostructured macroporous bioanode based on polyaniline-modified natural loofah sponge for high-performance microbial fuel cells.
    Yuan Y; Zhou S; Liu Y; Tang J
    Environ Sci Technol; 2013 Dec; 47(24):14525-32. PubMed ID: 24229064
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tailoring Surface Properties of Electrodes for Synchronous Enhanced Extracellular Electron Transfer and Enriched Exoelectrogens in Microbial Fuel Cells.
    Li Y; Liu J; Chen X; Wu J; Li N; He W; Feng Y
    ACS Appl Mater Interfaces; 2021 Dec; 13(49):58508-58521. PubMed ID: 34871496
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nitrogen doped carbon nanoparticles enhanced extracellular electron transfer for high-performance microbial fuel cells anode.
    Yu YY; Guo CX; Yong YC; Li CM; Song H
    Chemosphere; 2015 Dec; 140():26-33. PubMed ID: 25439129
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hierarchically Three-Dimensional Nanofiber Based Textile with High Conductivity and Biocompatibility As a Microbial Fuel Cell Anode.
    Tao Y; Liu Q; Chen J; Wang B; Wang Y; Liu K; Li M; Jiang H; Lu Z; Wang D
    Environ Sci Technol; 2016 Jul; 50(14):7889-95. PubMed ID: 27294591
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Novel Gas Diffusion Cloth Bioanodes for High-Performance Methane-Powered Microbial Fuel Cells.
    Yu L; Yang Z; He Q; Zeng RJ; Bai Y; Zhou S
    Environ Sci Technol; 2019 Jan; 53(1):530-538. PubMed ID: 30484637
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electricity generation from real industrial wastewater using a single-chamber air cathode microbial fuel cell with an activated carbon anode.
    Mohamed HO; Obaid M; Sayed ET; Liu Y; Lee J; Park M; Barakat NAM; Kim HY
    Bioprocess Biosyst Eng; 2017 Aug; 40(8):1151-1161. PubMed ID: 28526899
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Analysis and Characterization of Multi-modified Anodes via Nitric Acid and PPy/AQDS in Microbial Fuel Cells].
    Shen WH; Zhu NW; Yin FH; Wu PX; Zhang YH
    Huan Jing Ke Xue; 2016 Sep; 37(9):3488-3497. PubMed ID: 29964785
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Effects of Anode Materials on Electricity Generation and Organic Wastewater Treatment of 6 L Microbial Fuel Cells].
    Ding WJ; Yu LL; Chen J; Cheng SA
    Huan Jing Ke Xue; 2017 May; 38(5):1911-1917. PubMed ID: 29965096
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Promoting the anode performance of microbial fuel cells with nano-molybdenum disulfide/carbon nanotubes composite catalyst.
    Guo W; Li X; Cui L; Li Y; Zhang H; Ni T
    Bioprocess Biosyst Eng; 2022 Jan; 45(1):159-170. PubMed ID: 34642822
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Anode macrostructures influence electricity generation in microbial fuel cells for wastewater treatment.
    Ishii Y; Miyahara M; Watanabe K
    J Biosci Bioeng; 2017 Jan; 123(1):91-95. PubMed ID: 27514908
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.