These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 37086711)

  • 21. Developing synthetic conical nanopores for biosensing applications.
    Sexton LT; Horne LP; Martin CR
    Mol Biosyst; 2007 Oct; 3(10):667-85. PubMed ID: 17882330
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Tuning ion transport and selectivity by a salt gradient in a charged nanopore.
    Yeh LH; Hughes C; Zeng Z; Qian S
    Anal Chem; 2014 Mar; 86(5):2681-6. PubMed ID: 24484296
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Correlation of Ion Transport Hysteresis with the Nanogeometry and Surface Factors in Single Conical Nanopores.
    Wang D; Brown W; Li Y; Kvetny M; Liu J; Wang G
    Anal Chem; 2017 Nov; 89(21):11811-11817. PubMed ID: 28975786
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effect of membrane thermal conductivity on ion current rectification in conical nanochannels under asymmetric temperature.
    Qiao N; Li Z; Zhang Z; Guo H; Liao J; Lu W; Li C
    Anal Chim Acta; 2023 Oct; 1278():341724. PubMed ID: 37709465
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Modulation of Ionic Current Rectification in Ultrashort Conical Nanopores.
    Ma L; Li Z; Yuan Z; Huang C; Siwy ZS; Qiu Y
    Anal Chem; 2020 Dec; 92(24):16188-16196. PubMed ID: 33216526
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Nanoscale electrohydrodynamic ion transport: Influences of channel geometry and polarization-induced surface charges.
    Paul A; Aluru NR
    Phys Rev E; 2024 Feb; 109(2-2):025105. PubMed ID: 38491612
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Host-guest supramolecular chemistry in solid-state nanopores: potassium-driven modulation of ionic transport in nanofluidic diodes.
    Pérez-Mitta G; Albesa AG; Knoll W; Trautmann C; Toimil-Molares ME; Azzaroni O
    Nanoscale; 2015 Oct; 7(38):15594-8. PubMed ID: 26365392
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Dramatic pressure-sensitive ion conduction in conical nanopores.
    Jubin L; Poggioli A; Siria A; Bocquet L
    Proc Natl Acad Sci U S A; 2018 Apr; 115(16):4063-4068. PubMed ID: 29610303
    [TBL] [Abstract][Full Text] [Related]  

  • 29. pH-regulated ionic current rectification in conical nanopores functionalized with polyelectrolyte brushes.
    Zeng Z; Ai Y; Qian S
    Phys Chem Chem Phys; 2014 Feb; 16(6):2465-74. PubMed ID: 24358472
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Charging a capacitor from an external fluctuating potential using a single conical nanopore.
    Gomez V; Ramirez P; Cervera J; Nasir S; Ali M; Ensinger W; Mafe S
    Sci Rep; 2015 Apr; 5():9501. PubMed ID: 25830563
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Ionic Signal Amplification of DNA in a Nanopore.
    Tsutsui M; Yokota K; He Y; Kawai T
    Small Methods; 2022 Nov; 6(11):e2200761. PubMed ID: 36196624
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Tunable Nanopore Arrays as the Basis for Ionic Circuits.
    Lucas RA; Siwy ZS
    ACS Appl Mater Interfaces; 2020 Dec; 12(50):56622-56631. PubMed ID: 33283510
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Ionic conduction, rectification, and selectivity in single conical nanopores.
    Cervera J; Schiedt B; Neumann R; Mafé S; Ramírez P
    J Chem Phys; 2006 Mar; 124(10):104706. PubMed ID: 16542096
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Quantification of steady-state ion transport through single conical nanopores and a nonuniform distribution of surface charges.
    Liu J; Wang D; Kvetny M; Brown W; Li Y; Wang G
    Langmuir; 2013 Jul; 29(27):8743-52. PubMed ID: 23799796
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Ionic current modulation from DNA translocation through nanopores under high ionic strength and concentration gradients.
    Zhang Y; Wu G; Si W; Ma J; Yuan Z; Xie X; Liu L; Sha J; Li D; Chen Y
    Nanoscale; 2017 Jan; 9(2):930-939. PubMed ID: 28000822
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Electro-osmotic pumping and ion-concentration polarization based on conical nanopores.
    Yeh HC; Chang CC; Yang RJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jun; 91(6):062302. PubMed ID: 26172714
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Cation-Selective Oxide Semiconductor Mesoporous Membranes for Biomimetic Ion Rectification and Light-Powered Ion Pumping.
    Li L; Sun M; Hu Z; Nie X; Xiao T; Liu Z
    Small; 2022 Sep; 18(35):e2202910. PubMed ID: 35931463
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Ion current rectification properties of non-Newtonian fluids in conical nanochannels.
    Tang L; Hao Y; Peng L; Liu R; Zhou Y; Li J
    Phys Chem Chem Phys; 2024 Jan; 26(4):2895-2906. PubMed ID: 38170851
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Scan-rate-dependent ion current rectification and rectification inversion in charged conical nanopores.
    Momotenko D; Girault HH
    J Am Chem Soc; 2011 Sep; 133(37):14496-9. PubMed ID: 21851111
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Space charge modulation and ion current rectification of a cylindrical nanopore functionalized with polyelectrolyte brushes subject to an applied pH-gradient.
    Chen YT; Hsu JP
    J Colloid Interface Sci; 2022 Jan; 605():571-581. PubMed ID: 34340041
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.